http://iet.metastore.ingenta.com
1887

Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information

Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: an ideal state-feedback H controller with full access to the complete state information and two static output-feedback H controllers with restricted neighbouring state information. To assess the performance of the proposed controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations are conducted, using the full scale North-South El Centro 1940 seismic record as ground acceleration input. The obtained results indicate that, despite the severe information constraints, the proposed static output-feedback controllers attain a level of seismic protection that is very similar to that achieved by the ideal state-feedback controller with complete state information.

References

    1. 1)
    2. 2)
      • 2. Li, H., Huo, L.: ‘Advances in structural control in civil engineering in China’, Math. Probl. Eng., 2010, Article ID 936081, pp. 123.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Oliveira, F., Morais, P., Suleman, A.: ‘Predictive control for earthquake response mitigation of buildings using semiactive fluid dampers’, Shock Vib., 2014, Article ID 670683, pp. 114.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 13. Boyd, S., Ghaoui, L.E., Feron, E., et al : ‘Linear matrix inequalities in system and control theory’ (SIAM Studies in Applied Mathematics, Philadelphia, 1994).
    14. 14)
    15. 15)
    16. 16)
      • 16. Palacios-Quiñonero, F., Rubió-Massegú, J., Rossell, J.M., et al : ‘Discrete-time multioverlapping controller design for structural vibration control of tall buildings under seismic excitation’, Math. Probl. Eng., 2012, Article ID 636878, pp. 120.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 25. Cai, M., Xiang, Z., Karimi, H.R.: ‘Robust sampled-data H control for vibration mitigation of offshore platforms with missing measurements’, Math. Probl. Eng., 2014, Article ID 914616, pp. 110.
    26. 26)
      • 27. Chopra, A.K.: ‘Dynamics of structures. Theory and applications to earthquake engineering’ (Prentice-Hall, New Jersey, 2007, 3rd edn.).
    27. 27)
      • 28. Balas, G.J., Chiang, R.Y., Packard, A.K., et al : ‘MATLABTM Robust control Toolbox 3. User's guide’ (MathWorks Inc., Natick, Version 4.2, 2012).
    28. 28)
      • 29. Kurino, H., Matsunaga, Y., Yamada, T., et al : ‘High performance passive hydraulic damper with semi-active characteristics’, Proc. 13th World Conf. on Earthquake Engineering, Vancouver, Canada, 2004. Paper No. 33, pp. 112.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0737
Loading

Related content

content/journals/10.1049/iet-cta.2015.0737
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address