access icon free Data-based fault-tolerant control for uncertain linear systems with actuator faults

This study investigates the robust adaptive fault-tolerant control (FTC) problem for unknown continuous-time linear systems with parameter uncertainties, external disturbances and actuator faults such as stuck, outage and loss of effectiveness. It is assumed that the upper bounds of the disturbances and stuck faults are unknown. A new data-based FTC scheme is proposed in a parameter-dependent form. The time-varying parameters are adjusted online based on an adaptive method to compensate automatically the uncertainties, disturbances and actuator faults. The time-invariant parameter solved by using real system data is introduced for helping to stabilise the system. Furthermore, it is shown that all signals in the resulting closed-loop system are uniformly ultimately bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data based and it is easier to implement. Finally, two simulation examples are provided to show the effectiveness of the proposed approach.

Inspec keywords: continuous time systems; closed loop systems; time-varying systems; adaptive control; robust control; uncertain systems; compensation; fault tolerant control; linear systems

Other keywords: outage; effectiveness loss; uncertain linear systems; data-based fault-tolerant control; stuck faults; parameter uncertainties; data-based FTC scheme; robust adaptive fault-tolerant control problem; unknown continuous-time linear systems; system stabilisation; parameter-dependent form; actuator faults; time-varying parameter adjustment; external disturbances; time-invariant parameter; real system data; resulting closed-loop system

Subjects: Linear control systems; Self-adjusting control systems; Time-varying control systems; Stability in control theory

References

    1. 1)
      • 20. Ye, D., Park, J.H., Fan, Q.Y.: ‘Adaptive robust actuator fault compensation for linear systems using a novel fault estimation mechanism’, Int. J. Rob. Nonlinear Control, 2015, doi: 10.1002/rnc.3369.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 14. Jin, X.Z., Yang, G.H.: ‘Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances’, Acta Autom. Sin., 2009, 35, pp. 305309.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 26. Xie, C.H., Yang, G.H.: ‘Approximate guaranteed cost fault-tolerant control of unknown nonlinear systems with time-varying actuator faults’, Nonlinear Dyn., 2015, doi: 10.1007/s11071-015-2324-6.
    15. 15)
      • 30. Bradtke, S.J., Ydstie, B.E., Barto, A.G.: ‘Adaptive linear quadratic control using policy iteration’, Proc. American Control Conf., 1994, pp. 34753479.
    16. 16)
      • 39. Hanke, C., Nordwall, D.: ‘The simulation of a jumbo jet transport aircraft. Vol. II: Modeling data’, Technical Report CR-114494/D6-30643-VOL2, NASA and The Boeing Company, 1970..
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 40. Slotine, J.J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 29. Lewis, F.L., Vrabie, D., Syrmos, V.L.: ‘Optimal control’ (John Wiley & Sons, Hoboken,NJ, 2012).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0704
Loading

Related content

content/journals/10.1049/iet-cta.2015.0704
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading