access icon free Summation inequality and its application to stability analysis for time-delay systems

This study proposes a new summation inequality, called the free-matrix-based summation inequality, which further extends certain existing summation inequalities in the literature. Less conservative stability criteria are proposed for discrete-time systems with time-varying delays. Numerical examples are provided to demonstrate the improvement of the proposed approach.

Inspec keywords: discrete time systems; stability criteria; time-varying systems; delay systems; linear matrix inequalities

Other keywords: time-delay systems; discrete-time systems; time-varying delays; stability analysis; free-matrix-based summation inequality; stability criteria

Subjects: Stability in control theory; Discrete control systems; Time-varying control systems; Distributed parameter control systems; Algebra

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 18. Zeng, , H., , He, , Y., , Wu, , M., , et al: ‘Free-matrix-based integral inequality for stability analysis of systems with time-varying delay’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 27682772.
    25. 25)
      • 15. Liu, J., Zhang, J.: ‘Note on stability of discrete-time time-varying delay systems’, IET Control Theory Appl., 2012, 6, (2), pp. 335339.
    26. 26)
      • 13. Yue, D., Tian, E., Zhang, Y.: ‘A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay’, Int. J. Robust Nonlinear Control, 2009, 19, (13), pp. 14931518.
    27. 27)
      • 12. Zhang, B., Xu, S., Zou, Y.: ‘Improved stability criterion and its applications in delayed controller design for discrete-time systems’, Automatica, 2008, 44, (11), pp. 29632967.
    28. 28)
      • 1. Gu, K., Chen, J., Kharitonov, V.-L.: ‘Stability of time-delay systems’ (Springer Science & Business Media, 2003).
    29. 29)
      • 19. Xu, , S., , Lam, , J., , Zhang, , B., , et al: ‘New insight into delay-dependent stability of time-delay systems’, Int. J. Robust Nonlinear Control, 2015, 25, (7), pp. 961970.
    30. 30)
      • 2. Fridman, E., Shaked, U.: ‘Stability and guaranteed cost control of uncertain discrete delay systems’, Int. J. Control, 2005, 78, (4), pp. 235246.
    31. 31)
      • 22. Li, X., Gao, H.: ‘A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis’, IEEE Trans. Autom. Control, 2011, 56, (9), pp. 21722178.
    32. 32)
      • 23. Gonzalez, A., Guerra, T.-M.: ‘An improved robust stabilization method for discrete-time fuzzy systems with time-varying delays’, J. Franklin Inst., 2014, 351, (11), pp. 51485161.
    33. 33)
      • 24. Park, P.-G., Ko, J.-W., Jeong, C.: ‘Reciprocally convex approach to stability of systems with time-varying delays’, Automatica, 2011, 47, (1), pp. 235238.
    34. 34)
      • 3. Kao, C.-Y.: ‘On stability of discrete-time LTI systems with varying time delays’, IEEE Trans. Autom. Control, 2012, 57, (5), pp. 12431248.
    35. 35)
      • 21. Huang, H., Feng, G.: ‘Improved approach to delay-dependent stability analysis of discrete-time systems with time-varying delay’, IET Control Theory Appl., 2010, 4, (10), pp. 21522159.
    36. 36)
      • 7. He, Y., Wu, M., Liu, G.P., et al.: ‘Output feedback stabilization for a discrete-time system with a time-varying delay’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 23722377.
    37. 37)
      • 8. Gao, H., Chen, T.: ‘New results on stability of discrete-time systems with time-varying state delay’, IEEE Trans. Autom. Control, 2007, 52, (2), pp. 328334.
    38. 38)
      • 17. Seuret, , A., , Gouaisbaut, , F., , Fridman, , E.: ‘Stability of discrete-time systems with time-varying delays via a novel summation inequality’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 27402745.
    39. 39)
      • 11. Shao, H., Han, Q.-L.: ‘New stability criteria for linear discrete-time systems with interval-like time-varying delays’, IEEE Trans. Autom. Control, 2011, 56, (3), pp. 619625.
    40. 40)
      • 14. Meng, X., Lam, J., Du, B., et al.: ‘A delay-partitioning approach to the stability analysis of discrete-time systems’, Automatica, 2010, 46, (3), pp. 610614.
    41. 41)
      • 5. Peng, C.: ‘Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality’, IET Control Theory Appl., 2012, 6, (3), pp. 448453.
    42. 42)
      • 6. Zhang, X.-M., Han, Q.-L.: ‘Delay-dependent robust H filtering for uncertain discrete-time systems with time-varying delay based on a finite sum inequality’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2006, 53, (12), pp. 14661470.
    43. 43)
      • 20. Xu, S., Lam, J., Zhang, B.: ‘A new result on the delay-dependent stability of discrete systems with time-varying delays’, Int. J. Robust Nonlinear Control, 2014, 24, (16), pp. 25122521.
    44. 44)
      • 4. Kim, S.-H.: ‘Relaxed inequality approach to robust H stability analysis of discrete-time systems with time-varying delay’, IET Control Theory Appl., 2012, 6, (13), pp. 21492156.
    45. 45)
      • 16. Seuret, A., Gouaisbaut, F.: ‘Wirtinger-based integral inequality: application to time-delay systems’, Automatica, 2013, 49, (9), pp. 28602866.
    46. 46)
      • 10. Kwon, O.-M., Park, M.-J., Park, J.-H., et al.: ‘Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov–Krasovskii functional’, J. Franklin Inst., 2013, 350, (3), pp. 521540.
    47. 47)
      • 9. Wu, L., Su, X., Shi, P., et al.: ‘A new approach to stability analysis and stabilization of discrete-time TS fuzzy time-varying delay systems’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (1), pp. 273286.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0576
Loading

Related content

content/journals/10.1049/iet-cta.2015.0576
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading