access icon free Robust and fast non-singular terminal sliding mode control for piezoelectric actuators

Piezoelectric actuators (PEAs) are essential elements in many systems that require high precision and accuracy. However, the difficulty with the use of PEAs is their actuator uncertainties including the highly non-linear behaviour which is a consequence of the hysteresis property inherently within PEAs. Therefore, a robust control system is essential for such actuators. This study proposes a systematic control method that utilises a fast non-singular terminal sliding mode (FNTSM) for PEAs. Unlike the conventional sliding mode (CSM), the FNTSM control method is characterised by chatter free. Besides, a zero error convergence can be guaranteed in finite time in the presence of disturbance and system uncertainties. The design of the FNTSM control is based on the bounded information of parametric uncertainties. The feedback velocity is provided for the FNTSM controller by using the a model-free velocity estimator. Theoretical analysis and experimental results reveal that the FNTSM controller can achieve faster and higher precision performance in comparison with either a CSM or a linear controller.

Inspec keywords: robust control; nonlinear control systems; piezoelectric actuators; linear systems; variable structure systems; uncertain systems

Other keywords: systematic control method; fast nonsingular terminal sliding mode control; nonlinear behaviour; hysteresis property; zero error convergence; CSM; PEA; model-free velocity estimator; parametric uncertainties; finite time; piezoelectric actuators; actuator uncertainties; conventional sliding mode; robust control system; FNTSM control method; linear controller

Subjects: Multivariable control systems; Nonlinear control systems; Microactuators; Stability in control theory; Linear control systems

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 15. Stepanenko, Y., Su, C.-Y.Intelligent control of piezoelectric actuators’, Proc. IEEE Conf. Decision Control, 1998, 4, pp. 42344239.
    9. 9)
      • 33. Simon, D.: ‘Optimal state estimation: Kalman, H infinity, and nonlinear approaches’ (John Wiley & Sons, 2006).
    10. 10)
      • 9. Sitti, M.: ‘Survey of nanomanipulation systems’, Proc. IEEE Conf. Nanotechnology2001, pp. 7580.
    11. 11)
    12. 12)
      • 7. Chan, K.W., Liao, W.-H.: ‘Precision positioning of hard disk drives using piezoelectric actuators with passive damping’, Proc. IEEE Int. Conf. on Mechatronics and Automation2006, pp. 12691274.
    13. 13)
      • 1. Binnig, G., Rohrer, H.: ‘Scanning tunneling microscopy’, IBM J. Res. Dev., 2000, 44, (1–2), pp. 279–293.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 30. Zheng, J., Fu, M.: ‘A simple robust controller for hysteresis and resonance compensation of piezoelectric actuators’, Proc. IEEE Int. Control Auto. Robot Conf.2012, pp. 282287.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 26. Slotine, J.-J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 34. Hilairet, M., Auger, F., Darengosse, C.: ‘Two efficient Kalman filters for flux and velocity estimation of induction motors’, Proc. IEEE Power Electronics Specialists Conf., 2000, pp. 891896.
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0401
Loading

Related content

content/journals/10.1049/iet-cta.2015.0401
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading