access icon free Feedback preparation of maximally entangled states of two-qubit systems

Bell states play a central role in the field of quantum information. For two-qubit systems, this study proposes a new non-smooth control strategy within the theoretical framework of quantum continuous measurement, and achieves global feedback stabilisation in any target Bell state. For a target Bell state, the authors select one measured observable and two control channels, where the control law associated with one channel is kept constant. They design a non-smooth control law for the other control channel, and prove the stability of the whole closed-loop system. Some simulation experiments show that the control strategy in this paper has a good control effect.

Inspec keywords: stability; feedback; continuous time systems; closed loop systems; discrete time systems; control system synthesis; observability

Other keywords: two-qubit systems; target Bell state; maximally entangled states; measured observable channel; nonsmooth control strategy; quantum continuous measurement; closed-loop system stability; control channel; feedback analysis; quantum information; nonsmooth control law design; global feedback stabilisation

Subjects: Discrete control systems; Control system analysis and synthesis methods; Stability in control theory

References

    1. 1)
      • 23. Kuang, S., Dong, D., Petersen, I.R.: ‘Approximate bang-bang Lyapunov control for closed quantum systems’, Proc. 2014 Australian Control Conf., Canberra, Australia, November 2014, pp. 124129.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 39. Tsumura, K.: ‘Stabilization of quantum spin systems via continuous feedback control’, Proc. 35th SICE Symp. on Control Theory, Osaka, Japan, September 2006, pp. 1921.
    13. 13)
    14. 14)
    15. 15)
      • 46. Kushner, H.J.: ‘Stochastic Stability’ in Curtain R.F. (Ed.): ‘Stability of stochastic dynamical systems’ (Springer Press, Berlin, 1972), pp. 97123.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 10. Milburn, H.M., Wiseman, G.J.: ‘Quantum measurement and control’ (Cambridge University Press, Cambridge, 2009).
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 43. Belavkin, V.P.: ‘Quantum filtering of Markov signals with white quantum noise’, Radiotekh. Elektron., 1980, 25, pp. 14451453.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 30. Altafini, C., Ticozzi, F.: ‘Almost global stochastic feedback stabilization of conditional quantum dynamics’, 2005, arXiv preprint quant-ph/0510222.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 45. Kushner, H.J.: ‘Stochastic stability and control’ (Academic Press, New York, London, 1967).
    39. 39)
    40. 40)
      • 41. Abe, T., Tsumura, K.: ‘Generation of quantum entangled state via continuous feedback control’, Proc. SICE Annual Conf. 2008, Tokyo, August 2008, pp. 33053308.
    41. 41)
    42. 42)
    43. 43)
      • 12. D'Alessandro, D.: ‘Introduction to quantum control and dynamics’ (CRC Press, Boca Raton, 2007).
    44. 44)
    45. 45)
      • 32. Tsumura, K.: ‘Global stabilization at arbitrary eigenstates of N-dimensional quantum spin systems via continuous feedback’, Proc. 2008 American Control Conf., Seattle WA, USA, June 2008, pp. 41484153.
    46. 46)
      • 14. Somaraju, R., Petersen, I.R.: ‘Lyapunov stability for quantum Markov processes’, Proc. 2009 American Control Conf., St. Louis, MO, USA, June 2009, pp. 719724.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0248
Loading

Related content

content/journals/10.1049/iet-cta.2015.0248
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading