http://iet.metastore.ingenta.com
1887

Intelligent digital redesign for non-linear systems: observer-based sampled-data fuzzy control approach

Intelligent digital redesign for non-linear systems: observer-based sampled-data fuzzy control approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an intelligent digital redesign (IDR) technique is proposed for an observer-based sampled-data fuzzy controller of non-linear systems. By using a Takagi–Sugeno fuzzy model, the pre-designed analog and sampled-data fuzzy controllers are supposed, and these discretised closed-loop systems are obtained, respectively. Based on the IDR problem, the authors guarantee both stability and state-matching conditions. Unlike the previous techniques, the proposed IDR not only improves the state-matching performance using the state-matching error cost function, but is also derived in the strict linear matrix inequality format. In a numerical example, the effectiveness of the proposed technique and the results of the improved performance are shown.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Tanaka, K., Wand, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (Wiley, New York, 2001).
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Chen, T., Francis, B.: ‘Optimal sampled-data control systems’ (Springer, London, 1995).
    15. 15)
    16. 16)
    17. 17)
      • 17. Chang, W., Park, J.B., Lee, H.J., et al : ‘LMI approach to digital redesign of linear time-invariant systems’, IEE Proc. Control Theory Appl., 2002, 149, 297–302.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 30. ‘SCILAB Software’: http://www.scilab.org/.
    31. 31)
    32. 32)
      • 32. Kim, D.W., Lee, H.J., Tomizuka, M.: ‘Fuzzy stabilization of nonlinear systems under sampled-data feedback: an exact discrete-time model approach’, IEEE Trans. Fuzzy Syst., 2010, 18, (2), pp. 251260.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 40. Boulkroune, A., Tadjine, M., M'Saad, M., et al : ‘Adaptive fuzzy observer for uncertain nonliear systems’, Control Intell. Syst., 2011, 39, (3), pp. 145150.
    41. 41)
    42. 42)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0244
Loading

Related content

content/journals/10.1049/iet-cta.2015.0244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address