access icon free Receding horizon particle swarm optimisation-based formation control with collision avoidance for non-holonomic mobile robots

This study proposes a novel model predictive control (MPC) based on receding horizon particle swarm optimisation (RHPSO) for formation control of non-holonomic mobile robots by incorporating collision avoidance and control input minimisation and guaranteeing asymptotic stability. In most conventional MPC approaches, the collision avoidance constraint is imposed by the 2-norm of a relative position vector at each discrete time step. Thus, multi-robot formation control problem can be formulated as a constrained non-linear optimisation problem. In general, traditional optimisation techniques suitable for addressing constrained non-linear optimisation problems take a longer computation time with an increase in the number of constraints. The traditional approaches therefore suffer from the computational complexity problem corresponding to an increase in the prediction horizon. To address this problem without a significant increase in computational complexity, a novel strategy for collision avoidance is proposed to incorporating a particle swarm optimisation. In addition, the stability conditions are derived in simplified forms that can be satisfied by selecting appropriate constant values for control gains and weight parameters. Numerical simulations verify the effectiveness of the proposed RHPSO-based formation control.

Inspec keywords: particle swarm optimisation; predictive control; collision avoidance; discrete time systems; multi-robot systems; numerical analysis; mobile robots; computational complexity

Other keywords: constrained nonlinear optimisation problems; novel model predictive control; nonholonomic mobile robots; optimisation techniques; MPC; particle swarm optimisation; multirobot formation control problem; collision avoidance constraint; receding horizon particle swarm optimisation; RHPSO based formation control; computational complexity; computational complexity problem; discrete time step; position vector; formation control; collision avoidance; constrained nonlinear optimisation problem; numerical simulations

Subjects: Spatial variables control; Discrete control systems; Optimisation techniques; Mobile robots; Optimal control; Computational complexity; Other numerical methods

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 29. Kennedy, J., Eberhart, R.C.: ‘Swarm intelligence’ (Morgan Kaufmann Publisher, 2001).
    15. 15)
      • 28. Lee, S.-M., Kim, H., Myung, H.: ‘Cooperative coevolution-based model predictive control for multi-robot formation’, Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 18901895.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 17. Richards, A., How, J.: ‘A decentralized algorithm for robust constrained model predictive control’. Proc. IEEE Amer. Control Conf., 2004, pp. 42614266.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 18. Richards, A., How, J.: ‘Decentralized model predictive control of cooperating UAVs’. Proc. IEEE Conf., Decision Control, 2004, pp. 42864291.
    31. 31)
    32. 32)
    33. 33)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0071
Loading

Related content

content/journals/10.1049/iet-cta.2015.0071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading