access icon free Multi-input and multi-output proportional-integral-derivative controller design via linear quadratic regulator-linear matrix inequality approach

This study considers the problem of designing a multi-input and multi-output (MIMO) proportional-integral-derivative (PID) controller via direct optimal or suboptimal linear quadratic regulator (LQR) approach. To design the controller, first the MIMO PID design problem is transformed into a state feedback control and then the gains of the state feedback controller are chosen through an optimal or suboptimal LQR design. Given a minimal state space representation (A, B, C) of the plant, a necessary and sufficient condition (based on matrices A, C) for which the optimal problem (i.e. PID design via optimal LQR) is solvable is obtained. When this optimal problem is not solvable, a suboptimal solution (i.e. PID design via suboptimal LQR), if exists, is obtained by converting the problem into trace minimisation one, which is solved using linear matrix inequality-based method. Suitable examples are considered to illustrate the approaches.

Inspec keywords: minimisation; control system synthesis; three-term control; state-space methods; linear matrix inequalities; linear quadratic control; state feedback; MIMO systems; suboptimal control

Other keywords: state feedback control; linear matrix inequality-based method; MIMO PID design problem; direct optimal approach; suboptimal linear quadratic regulator approach; minimal state space representation; proportional-integral-derivative controller; multi-input and multi-output controller; trace minimisation; LQR design; LMI

Subjects: Optimal control; Optimisation techniques; Multivariable control systems; Control system analysis and synthesis methods; Algebra

References

    1. 1)
      • 15. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control’ (John Willey and Sons, New York, 2005).
    2. 2)
    3. 3)
      • 10. Zhou, K., Doyle, J.C., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, 1996).
    4. 4)
    5. 5)
    6. 6)
      • 13. Löfberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. IEEE Int. Symp. on Computer Aided Control Systems Design, TaipeiSeptemmber 2004, pp. 284289(Available at:http://www.users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.Download).
    7. 7)
      • 7. Kondo, H., Ochi, Y., Sansao, S.: ‘PID controller design using fractional balanced reduction’. SICE Annual Conf., Waseda University, Tokyo, Japan, September 2011, pp. 17911796.
    8. 8)
      • 5. Silva, E.I., Erraz, D.A.: ‘An LQR based MIMO PID controller synthesis method for unconstrained lagrangian mechanical systems’. IEEE Conf. on Decision and Control, San Diego, CA, USA, December 2006, pp. 65936598.
    9. 9)
    10. 10)
    11. 11)
      • 11. Fazel, M., Hindi, H., Boyd, S.P.: ‘A rank minimization heuristic with application to minimum order system approximation’. American Control Conf., June 2001, vol. 6, pp. 47344739.
    12. 12)
      • 12. Astrom, K.J., Hagglund, T.: ‘PID controllers: theory, design and tuning’ (Instrument Society of America, Research Traingle Park, North carolina, 1995, 2nd edn.).
    13. 13)
      • 6. Delibasi, A., Kucukdemiral, I.B., Cansever, G.: ‘A robust PID like state-feedback control via LMI approach: an application on a double inverted pendulum system’. IEEE Int. Symp. on Computational Intelligence in Robotics and Automation, Jacksonville, USA, June 2007, pp. 374379.
    14. 14)
      • 1. Wang, Q.G., Ye, Z., Cai, W.J., Hang, C.C.: ‘PID control for multivariable processes’ vol. 373, (Springer, 2008).
    15. 15)
    16. 16)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0012
Loading

Related content

content/journals/10.1049/iet-cta.2015.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading