access icon free Stochastic stability for discrete-time antilinear systems with Markovian jumping parameters

In this study, the discrete-time antilinear systems with Markovian jumping parameters are investigated. The concept of stochastic stability is extended to the context of discrete-time Markovian jump (DTMJ) antilinear systems. By using stochastic Lyapunov approach, the authors derive some necessary and sufficient conditions for a DTMJ antilinear system to be stochastically stable in terms of coupled anti-Lyapunov matrix equations. In addition, two types of iterative algorithms are proposed to solve these coupled anti-Lyapunov matrix equations. Finally, some numerical examples are given to show the efficiency of the proposed algorithms and potential applications of the obtained results on antilinear systems.

Inspec keywords: stability; Lyapunov methods; stochastic systems; Markov processes; Lyapunov matrix equations; nonlinear control systems; discrete time systems; iterative methods

Other keywords: iterative algorithms; coupled antiLyapunov matrix equations; stochastic Lyapunov approach; Markovian jumping parameters; discrete-time Markovian jump antilinear systems; DTMJ antilinear systems; necessary and sufficient conditions; stochastic stability

Subjects: Interpolation and function approximation (numerical analysis); Nonlinear control systems; Markov processes; Discrete control systems; Stability in control theory; Time-varying control systems; Algebra

References

    1. 1)
    2. 2)
      • 12. Fang, Y., Loparo, K.A., Feng, X.: ‘Stability of discrete-time jump linear systems’, J. Math. Syst. Estimation Control, 1995, 5, (3), pp. 275321.
    3. 3)
      • 2. Misas, M., Ramirez, M.T.: ‘Colombian economic growth under Markovswitching regimes with endogenous transition probabilities’, (December 2006). Available at SSRN: http://ssrn.com/abstract=953954 or http://dx.doi.org/10.2139/ssrn.953954.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 20. Wu, A.G., Duan, G.R., Liu, W., et al: ‘Controllability and stability of discrete-time antilinear systems’. Proc. Australian Control Conf., Perth, Australia, November 2013, pp. 403408.
    10. 10)
    11. 11)
      • 28. Kantorovich, L., Akilov, G.: ‘Functional analysis in normed spaces’ (Macmillan, New York, 1964).
    12. 12)
    13. 13)
      • 3. Qiu, L., Yao, F.Q., Zhong, X.P.: ‘Stability analysis of networked control systems with random time delays and packet dropouts modeled by Markov chains’, J. Appl. Math., vol. 2013, Article ID 715072, 10 pages, 2013. doi:10.1155/2013/715072.
    14. 14)
    15. 15)
      • 1. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: ‘Discrete-time Markovian jump linear systems’ (Springer, Berlin, 2005).
    16. 16)
      • 21. Wu, A.G., Zhang, Y., Liu, W., et al: ‘State responses for continuous time antilinear systems’, accepted by IET Control Theory Appl., 2014. doi:10.1049/ietcta.2014.0734.
    17. 17)
      • 19. Budinich, P., Trautman, A.: ‘The spinorial chessboard’ (Springer, Berlin, 1988).
    18. 18)
    19. 19)
    20. 20)
      • 24. Qian, Y.Y., Wu, A.G., Liu, W.: ‘Stochastic stability of discrete-time Markovian jump antilinear systems’. Proc. Chinese Control and Decision Conf., Changsha, China, May 2014, pp. 43814386.
    21. 21)
      • 8. Kalidass, M., Su, H., Rathinasamy, S.: ‘Robust stochastic stability of discrete-time Markovian jump neural networks with Leakage delay’, Z. Naturforsch, 2014, 69a, pp. 7080.
    22. 22)
      • 9. Ji, Y., Chizeck, H.J., Feng, X., et al: ‘Stability and control of discrete-time jump linear systems’, Control Theor. Adv. Tech., 1991, 7, (2), pp. 247270.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 26. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, England, 1986).
    27. 27)
    28. 28)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.1107
Loading

Related content

content/journals/10.1049/iet-cta.2014.1107
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading