Input-to-state stability of discrete-time singular systems based on quasi-min–max model predictive control
Input-to-state stability of discrete-time singular systems based on quasi-min–max model predictive control
- Author(s): Chan Gao ; Xiao-Hua Liu ; Wuquan Li
- DOI: 10.1049/iet-cta.2014.1088
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): Chan Gao 1 ; Xiao-Hua Liu 1 ; Wuquan Li 1
-
-
View affiliations
-
Affiliations:
1:
School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong 264025, People's Republic of China
-
Affiliations:
1:
School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong 264025, People's Republic of China
- Source:
Volume 9, Issue 11,
16 July 2015,
p.
1662 – 1669
DOI: 10.1049/iet-cta.2014.1088 , Print ISSN 1751-8644, Online ISSN 1751-8652
This study is concerned with robust quasi-min–max model predictive control (MPC) for a class of discrete-time singular systems with persistent disturbance and input constrains. To deal with the persistent disturbance, the authors introduce the notion of input-to-state stability (ISS) of discrete-time singular system for the first time. The optimal control can be obtained by solving a quasi-min–max optimal problem of a finite horizon cost function. On the basis of the proposed dual-mode MPC approach, it can be proved that the closed-loop discrete-time singular system is ISS, regular and causal. Finally, a numerical simulation shows the feasibility and effectiveness of the proposed method.
Inspec keywords: numerical analysis; minimax techniques; predictive control; robust control; optimal control; closed loop systems; discrete time systems
Other keywords: numerical simulation; dual-mode MPC approach; finite horizon cost function; optimal control; robust quasi-min-max model predictive control; closed-loop discrete-time singular system; persistent disturbance; ISS; input-to-state stability; input constrains
Subjects: Optimisation techniques; Discrete control systems; Optimal control; Other numerical methods; Stability in control theory
References
-
-
1)
-
1. Dai, L.: ‘Singular Control Systems’, (Springer-Verlag, Berlin, 1989).
-
-
2)
-
2. Hale, J.K., Verduyn lunel, S.M.: ‘Introduction to functional differential equations’, (Springer-Verlag, New York, 1993).
-
-
3)
-
3. Duan, G.: ‘Analysis and design of descriptor linear systems’, (Springer-Verlag, New York, 2010).
-
-
4)
-
4. Bender, D.J., Laub, A.J.: ‘The linear-quadratic optimal regulator for descriptor systems: discrete-time case’, Automatica, 1987, 23, (1), pp. 71–85 (doi: 10.1016/0005-1098(87)90119-1).
-
-
5)
- S.J. Qin , T.A. Badgwell . A survey of industrial model predictive control technology. Control Eng. Practice , 7 , 733 - 764
-
6)
- L. Magni , G.D. Nicolao , R. Scattolini , F. Allgower . Robust model predictive control of nonlinear discrete-time systems. Int. J. Robust Nonlinear Control , 229 - 246
-
7)
- M.V. Kothare , V. Balakrishnan , M. Morari . Robust constrained model predictive control using linear matrix inequalities. Automatica , 10 , 1361 - 1379
-
8)
- D.Q. Mayne , M.M. Seron , S.V. Raković . Robust model predictive control of constrained linear systems with bounded disturbance. Automatica , 2 , 219 - 224
-
9)
- H. Chen , F. Allgöwer . Quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica , 10 , 1205 - 1217
-
10)
- D.Q. Mayne , J.B. Rawlings , P.M. Scokaert . Constraint predictive control: stability and optimality. Automatica , 789 - 814
-
11)
- Y. Lu , Y. Arkun . Quasi-min-max MPC algorithms for LPV systems. Automatica , 527 - 540
-
12)
-
12. Zhang, L., Huang, B.: ‘Robust model predictive control of singular systems’, IEEE Trans. Autom. Control, 2004, 49, (6), pp. 1000–1006 (doi: 10.1109/TAC.2004.829634).
-
-
13)
-
13. Liu, X.H., Wang, L.J.: ‘Robust model predictive control for uncertain singular systems via dynamic output feedback’, Control Decis., 2009, 24, (9), pp. 1371–1376.
-
-
14)
-
14. Liu, X.H., Yang, Y.H.: ‘Robust model predictive control of singular systems with delayed-state and parameter uncertainty based on state observer’, Control Decis., 2009, 24, (4), pp. 606–611.
-
-
15)
- D. Limon , T. Alamo , F. Salas , E.F. Camacho . Input to state stability of min-max MPC controllers for nonlinear systems with bounded uncertainties. Automatica , 797 - 803
-
16)
-
16. Magni, L., Raimondo, D.M., Scattolini, R.: ‘Regional input-to-state stability of nonlinear model predictive control’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 1548–1553 (doi: 10.1109/TAC.2006.880808).
-
-
17)
- M. Lazar , D. Muñoz de la Peña , W. Heemels , T. Alamo . On input-to-state stability of min–max nonlinear model predictive control. Syst. Control Lett. , 1 , 39 - 48
-
18)
- M. Lazar , W.P.M.H. Heemels . Predictive control of hybrid systems: Input-to-state stability results for sub-optimal solutions. Automatica , 1 , 180 - 185
-
19)
-
19. Chen, Q.X., He, D.F., Yu, L.: ‘Input-to-state stability of min-max MPC scheme for nonlinear time-varying delay systems’, Asian J. Control, 2012, 14, (2), pp. 489–501 (doi: 10.1002/asjc.314).
-
-
20)
-
20. He, D.F., Huang, H., Chen, Q.X.: ‘Quasi-min-max MPC for constrained nonlinear systems with guaranteed input-to-state stability’, J. Franklin Inst., 2014, 351, (6), pp. 3405–3423 (doi: 10.1016/j.jfranklin.2014.03.006).
-
-
21)
- G. Zhang , Y. Xia , P. Shi . New bounded real lemma for discrete-time singular systems. Automatica , 886 - 890
-
22)
- F. Blanchini . Set invariance in control. Automatica , 11 , 1747 - 1767
-
23)
- N. Poursafar , H. Taghirad , M. Haeri . Model predictive control of non-linear discrete time systems: a linear matrix inequality approach. IET Control Theory Appl. , 10 , 1922 - 1932
-
24)
-
24. Zhou, Z., Yang, C., Zhang, Q., Cai, M.: ‘Input-to-state stability for descriptor systems with non-linear perturbations’, IET Control Theory Appl., 2011, 5, (13), pp. 1561–1567 (doi: 10.1049/iet-cta.2010.0483).
-
-
25)
- Z.-P. Jiang , Y. Wang . Input-to-state stability for discrete-time nonlinear systems. Automatica , 6 , 857 - 869
-
1)

Related content
