Functional observer for switched discrete-time singular systems with time delays and unknown inputs

Access Full Text

Functional observer for switched discrete-time singular systems with time delays and unknown inputs

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the functional observers design for a class of discrete-time switched singular systems simultaneously subject to state delays, unknown inputs (UIs) and arbitrary switching sequences. The singular matrix E is assumed to be switching-mode-dependent, and the UIs are present in both the state and the measurement channels. A mode-dependent, delay-type observer is first constructed, then, based on the unknown input decoupling and the switched Lyapunov theory, a method is proposed to design such observer which ensures both: the total elimination of the UIs and exponential estimate of the given function of the state vector. The conditions for the existence of the proposed observer are given through algebraic matrix inequalities, and exponential stability of the observation error dynamics is derived by using a properly constructed decay-rate-dependent switched Lyapunov function and the linear matrix inequality technique. Finally, an illustrative example is given to show the effectiveness of the obtained results.

Inspec keywords: observers; delays; discrete time systems; linear matrix inequalities; time-varying systems; Lyapunov methods; asymptotic stability

Other keywords: exponential stability; mode-dependent delay-type observer; unknown input decoupling; time delays; algebraic matrix inequalities; switching-mode-dependent; arbitrary switching sequences; discrete-time switched singular systems; functional observer; linear matrix inequality technique; state delays; decay-rate-dependent switched Lyapunov function

Subjects: Discrete control systems; Time-varying control systems; Stability in control theory; Distributed parameter control systems; Algebra

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 8. Trinh, H., Fernando, T.: ‘Functional observers for dynamical systems’ (Springer, Berlin, 2012).
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 12. Dai, L.: ‘Singular control systems’ (Springer-Verlag, Berlin-Heidelberg, 1989).
    13. 13)
    14. 14)
      • 14. Ma, S., Cheng, Z.: ‘Observer design for discrete time-delay singular systems with unknown inputs’. American Control Conf., 2005, pp. 42154219.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 19. Feng, J.-e.: ‘Finite time functional observers for discrete-time singular systems with unknown inputs’. Proc. 29th Chinese Control Conf., Beijing, China, July 2010, pp. 6570.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 23. Sun, Z., Ge, S.S.: ‘Stability theory of switched dynamical systems’ (Springer, London, 2011).
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 28. Djemai, M., Defoort, M. (Eds.): ‘Hybrid dynamical systems observation and control’ (Springer International Publishing, 2015).
    29. 29)
      • 29. Millerioux, G., Daafouz, J.: ‘Unknown input observers for switched linear discrete time systems’. American Control Conf., 2004, pp. 58025805.
    30. 30)
      • 30. Sundaram, S., Hadjicostis, C.N.: ‘Designing stable inverters and state observers for switched linear systems with unknown inputs’. Proc. 45th IEEE Conf. Decision and Control, San Diego, USA, December 2006, pp. 41054110.
    31. 31)
      • 31. Chen, J., Lagoa, C.M.: ‘Robust observer design for a class of switched systems’. Proc. 45th IEEE Conf. Decision and Control, San Diego, USA, December 2006, pp. 16591664.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 36. Niculescu, S.-I.: ‘Delay effects on stability: a robust control approach’ (Springer, London, 2001).
    37. 37)
    38. 38)
    39. 39)
      • 39. Boukas, E.-K.: ‘Control of singular systems with random abrupt changes’ (Springer, Berlin, 2007).
    40. 40)
    41. 41)
      • 41. Du, Z., Zhang, Q., Chang, G.: ‘State feedback stabilization for switched singular networked control systems with time-delay’. Proc. 2009 Chinese Control and Decision, Guilin, China, July 2009, pp. 55875591.
    42. 42)
    43. 43)
      • 43. Raouf, J., Michalska, H.: ‘Exponential stabilization of singular systems by controlled switching’. Proc. 49th IEEE Conf. Decision and Control, Atlanta, GA, USA, December 2010, pp. 414419.
    44. 44)
    45. 45)
      • 45. de Oliveira, M.C., Skelton, R.E.: ‘Stability tests for constrained linear systems’, in Reza, Moheimani S.O., (Ed.): ‘Perspectives in robust control’ (Springer, London, 2001), pp. 241257.
    46. 46)
      • 46. Rao, C.R., Mitra, S.K.: ‘Generalized inverse of matrices and its applications’ (Wiley, New York, 1971).
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0971
Loading

Related content

content/journals/10.1049/iet-cta.2014.0971
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading