Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays

This study deals with the problem of exponential stability analysis for a class of singular systems with interval time-varying discrete and distributed delays. By constructing a set of improved Lyapunov–Krasovskii functionals, new delay-dependent conditions are established in terms of linear matrix inequalities ensuring the regularity, impulse free and exponential stability of the system. This approach allows the authors to compute simultaneously the two bounds that characterise the exponential stability rate of the solution by various efficient convex optimisation algorithms. Numerical examples are given to illustrate the effectiveness of the obtained results.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 17. Anh, T., Hien, L.V., Phat, V.N.: ‘Stability analysis for linear non-autonomous systems with continuously distributed multiple time-varying delays and applications’, Acta Math. Viet., 2011, 36, (2), pp. 129143.
    8. 8)
    9. 9)
      • 8. Niculescu, S.-I.: ‘Delay effects on stability: a Robust control approach’ (Springer-Verlag, Berlin, 2001).
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 3. Aplevich, J.D.: ‘Implicit linear systems’ (Springer-Varlag, Berlin, 1991).
    15. 15)
      • 7. Yue, D., Lam, J., Ho, D.W.: ‘Delay-dependent robust exponential stability of uncertain descriptor systems with time-delaying delays’, Dyn. Cont. Discrete Impul. Syst., 2005, 12, (1), pp. 129149.
    16. 16)
    17. 17)
    18. 18)
      • 42. Wu, Z.G., Su, H., Shi, P., Chu, J.: ‘Analysis and synthesis of singular systems with time-delays’ (Springer-Verlag, Berlin, 2013).
    19. 19)
      • 18. Hien, L.V., Phat, V.N.: ‘New exponential estimate for robust stability of nonlinear neutral time-delay systems with convex polytopic uncertainties’, J. Nonlinear Conv. Anal., 2011, 12, (3), pp. 541552.
    20. 20)
    21. 21)
      • 5. Kumar, A., Daoutidis, P.: ‘Control of nonlinear differential algebraic equation systems’ (Chapma & Hall/SRC, Boca Raton, 1999).
    22. 22)
    23. 23)
      • 2. Xu, S., Lam, J.: ‘Robust control and filtering of singular systems’ (Springer, New York, 2006).
    24. 24)
    25. 25)
      • 1. Dai, L.: ‘Singular control systems’ (Springer-Verlag, Berlin, 1989).
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • 34. Cong, S., Sheng, Z.-B.: ‘On exponential stability conditions of descriptor systems with time-varying delay’, J. Appl. Math., 2012, Art. ID 532912, p. 12.
    44. 44)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0731
Loading

Related content

content/journals/10.1049/iet-cta.2014.0731
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address