Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays
- Author(s): Le Van Hien 1 ; Le Huy Vu 2 ; Vu Ngoc Phat 3
-
-
View affiliations
-
Affiliations:
1:
Department of Mathematics, Hanoi National University of Education, Hanoi, Vietnam;
2: Department of Mathematics, Hong Duc University, Thanhhoa, Vietnam;
3: Institute of Mathematics, VAST, Hanoi 10307, Vietnam
-
Affiliations:
1:
Department of Mathematics, Hanoi National University of Education, Hanoi, Vietnam;
- Source:
Volume 9, Issue 9,
06 June 2015,
p.
1364 – 1372
DOI: 10.1049/iet-cta.2014.0731 , Print ISSN 1751-8644, Online ISSN 1751-8652
This study deals with the problem of exponential stability analysis for a class of singular systems with interval time-varying discrete and distributed delays. By constructing a set of improved Lyapunov–Krasovskii functionals, new delay-dependent conditions are established in terms of linear matrix inequalities ensuring the regularity, impulse free and exponential stability of the system. This approach allows the authors to compute simultaneously the two bounds that characterise the exponential stability rate of the solution by various efficient convex optimisation algorithms. Numerical examples are given to illustrate the effectiveness of the obtained results.
Inspec keywords: convex programming; asymptotic stability; delays; time-varying systems; linear matrix inequalities; Lyapunov methods
Other keywords: improved delay-dependent exponential stability; linear matrix inequalities; singular systems; convex optimisation algorithm; improved Lyapunov–Krasovskii functional; interval time-varying distributed delay; mixed interval time-varying delay; interval time-varying discrete delay
Subjects: Stability in control theory; Distributed parameter control systems; Linear algebra (numerical analysis); Optimisation techniques; Time-varying control systems
References
-
-
1)
-
26. Ding, Y., Zhu, H., Zhong, S.: ‘Exponential stabilization using sliding mode control for singular systems with time-varying delays and nonlinear perturbations’, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, (10), pp. 4099–4107 (doi: 10.1016/j.cnsns.2011.02.034).
-
-
2)
- P. Park , J.W. Ko , C. Jeong . Reciprocally convex approach to stability of systems with time-varying delays. Automatica , 1 , 235 - 238
-
3)
- L.V. Hien , V.N. Phat . Exponential stability and stabilization of a class of uncertain linear time-delay systems. J. Franklin Inst. , 611 - 625
-
4)
-
23. Hien, L.V.: ‘An explicit criterion for finite-time stability of linear nonautonomous systems with delays’, Appl. Math. Lett., 2014, 30, pp. 12–18 (doi: 10.1016/j.aml.2013.12.005).
-
-
5)
-
14. Hien, L.V.: ‘Exponential stability and stabilisation of fuzzy time-varying delay systems’, Int. J. Syst. Sci., 2010, 41, (10), pp. 1155–1161 (doi: 10.1080/00207720903045858).
-
-
6)
-
24. Hien, L.V., Trinh, H.: ‘A new approach to state bounding for linear time-varying systems with delay and bounded disturbances’, Automatica, 2014, 50, (6), pp. 1735–1738 (doi: 10.1016/j.automatica.2014.04.025).
-
-
7)
-
17. Anh, T., Hien, L.V., Phat, V.N.: ‘Stability analysis for linear non-autonomous systems with continuously distributed multiple time-varying delays and applications’, Acta Math. Viet., 2011, 36, (2), pp. 129–143.
-
-
8)
- X. Meng , J. Lam , B. Du , H. Gao . A delay-partitioning approach to the stability analysis of discrete-time systems. Automatica , 3 , 610 - 614
-
9)
-
8. Niculescu, S.-I.: ‘Delay effects on stability: a Robust control approach’ (Springer-Verlag, Berlin, 2001).
-
-
10)
-
28. Shu, Z., Lam, J.: ‘Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays’, Int. J. Control, 2008, 81, (6), pp. 865–882 (doi: 10.1080/00207170701261986).
-
-
11)
-
11. Chen, H., Hu, P.: ‘New result on exponential stability for singular systems with two interval time-varying delays’, IET Control Theory Appl., 2013, 7, (15), pp. 941–1949 (doi: 10.1049/iet-cta.2013.0396).
-
-
12)
-
4. Campbell, S.L., Linh, V.H.: ‘Stability criteria for differential-algebraic equations with multiple delays and their numerical solutions’, Appl. Math. Comput., 2009, 208, (2), pp. 397–415 (doi: 10.1016/j.amc.2008.12.008).
-
-
13)
-
37. Kim, J.: ‘Delay-dependent robust H∞ control for discrete-time uncertain singular systems with interval time-varying delays in state and control input’, J. Franklin Inst., 2010, 347, (9), pp. 1704–1722 (doi: 10.1016/j.jfranklin.2010.08.004).
-
-
14)
-
3. Aplevich, J.D.: ‘Implicit linear systems’ (Springer-Varlag, Berlin, 1991).
-
-
15)
-
7. Yue, D., Lam, J., Ho, D.W.: ‘Delay-dependent robust exponential stability of uncertain descriptor systems with time-delaying delays’, Dyn. Cont. Discrete Impul. Syst., 2005, 12, (1), pp. 129–149.
-
-
16)
-
17. Zhu, S., Li, Z., Zhang, C.: ‘Delay decomposition approach to delay-dependent stability for singular time-delay systems’, IET Control Theory Appl., 2010, 4, (11), pp. 2613–2620 (doi: 10.1049/iet-cta.2009.0426).
-
-
17)
-
21. Souza, F.O., Palhares, R.M.: ‘New delay-interval stability condition’, Int. J. Syst. Sci., 2014, 45, (3), pp. 300–306 (doi: 10.1080/00207721.2012.720297).
-
-
18)
-
42. Wu, Z.G., Su, H., Shi, P., Chu, J.: ‘Analysis and synthesis of singular systems with time-delays’ (Springer-Verlag, Berlin, 2013).
-
-
19)
-
18. Hien, L.V., Phat, V.N.: ‘New exponential estimate for robust stability of nonlinear neutral time-delay systems with convex polytopic uncertainties’, J. Nonlinear Conv. Anal., 2011, 12, (3), pp. 541–552.
-
-
20)
- Z. Feng , J. Lam , H. Gao . α-dissipativity analysis of singular time-delay systems. Automatica , 11 , 2548 - 2552
-
21)
-
5. Kumar, A., Daoutidis, P.: ‘Control of nonlinear differential algebraic equation systems’ (Chapma & Hall/SRC, Boca Raton, 1999).
-
-
22)
-
27. Sun, Y.J.: ‘Exponential stability for continuous-time singular systems with multiple time delays’, J. Dyn. Syst. Meas. Control, 2003, 125, (2), pp. 262–264 (doi: 10.1115/1.1569952).
-
-
23)
-
2. Xu, S., Lam, J.: ‘Robust control and filtering of singular systems’ (Springer, New York, 2006).
-
-
24)
-
29. Wang, H., Xue, A., Lu, R.: ‘Absolute stability criteria for a class of nonlinear singular systems with time delay’, Nonlinear Anal. TMA, 2009, 70, (2), pp. 621–630 (doi: 10.1016/j.na.2007.12.030).
-
-
25)
-
1. Dai, L.: ‘Singular control systems’ (Springer-Verlag, Berlin, 1989).
-
-
26)
-
41. Wu, J., Lu, G., Wo, S., Xiao, X.: ‘Exponential stability and stabilization for nonlinear descriptor systems with discrete and distributed delays’, Int. J. Robust Nonlinear Control, 2013, 23, (12), pp. 1393–1404 (doi: 10.1002/rnc.2831).
-
-
27)
- E. Fridman . Stability of linear descriptor systems with delay: a Lyapunov-based approach. J. Math. Anal. Appl. , 1 , 24 - 44
-
28)
-
33. Wu, Z.G., Park, J.H., Su, H., Chu, J.: ‘Dissipativity analysis for singular systems with time-varying delays’, Appl. Math. Comput., 2011, 218, (8), pp. 4605–4613 (doi: 10.1016/j.amc.2011.10.044).
-
-
29)
-
35. Cong, S.: ‘New stability criteria of linear singular systems with time-varying delay’, Int. J. Syst. Sci., 2014, 45, (9), pp. 1927–1935 (doi: 10.1080/00207721.2012.759300).
-
-
30)
-
36. Boukas, E.K.: ‘Delay-dependent robust stabilizability of singular linear systems with delays’, Stoch. Anal. Appl., 2009, 27, (4), pp. 637–655 (doi: 10.1080/07362990902976165).
-
-
31)
-
43. Ding, Y., Zhong, S.H., Chen, W.: ‘A delay-range-dependent uniformly asymptotic stability criterion for a class of nonlinear singular systems’, Nonlinear Anal. RWA, 2011, 12, (2), pp. 1152–1162 (doi: 10.1016/j.nonrwa.2010.09.009).
-
-
32)
- Y. He , Q.G. Wang , L. Xie , C. Lin . Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Autom. Control , 2 , 293 - 299
-
33)
-
31. Chen, S.J., Shiau, L.G.: ‘Robust stability of uncertain singular time-delay systems via LFT approach’, Int. J. Syst. Sci., 2011, 42, (1), pp. 31–39 (doi: 10.1080/00207720903494676).
-
-
34)
-
30. Feng, Y.F., Zhu, X.L., Zhang, Q.L.: ‘Delay-dependent stability criteria for singular time-delay systems’, Acta Autom. Sin., 2010, 36, (3), pp. 433–437 (doi: 10.3724/SP.J.1004.2010.00433).
-
-
35)
-
35. Kwon, O.M., Park, M.J., Park, J.H., Lee, S.M., Cha, E.J.: ‘Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities’, IET Control Theory Appl., 2012, 6, (16), pp. 2567–2575 (doi: 10.1049/iet-cta.2012.0257).
-
-
36)
-
25. Gu, K., Liu, Y.: ‘Lyapunov–Krasosvskii functional for uniform stability of coupled differential-functional equations’, Automatica, 2009, 45, (3), pp. 798–804 (doi: 10.1016/j.automatica.2008.10.024).
-
-
37)
-
42. Feng, Z., Lam, J.: ‘Robust reliable dissipative filtering for discrete delay singular systems’, Signal Process., 2012, 92, (12), pp. 3010–3025 (doi: 10.1016/j.sigpro.2012.06.003).
-
-
38)
-
24. Haidar, A., Boukas, E.K.: ‘Exponential stability of singular systems with multiple time-varying delays’, Automatica, 2009, 45, (2), pp. 539–545 (doi: 10.1016/j.automatica.2008.08.019).
-
-
39)
- P. Balasubramaniam , R. Krishnasamy , R. Rakkiyappan . Delay-dependent stability criterion for a class of non-linear singular Markovian jump systems with mode-dependent interval time-varying delays. Commun. Nonlinear Sci. Numer. Simul. , 9 , 3612 - 3627
-
40)
- D. Yue , E. Tian , Y. Zhang . A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay. Int. J. Robust Nonlinear Control , 3 , 1493 - 1518
-
41)
- K. Gu , S.I. Niculescu . Survey on recent results in the stability and control of time-delay systems. ASME J. Dyn. Syst. Meas. Control , 158 - 165
-
42)
-
26. Li, H., Gu, K.: ‘Discretized Lyapunov–Krasovskii functional for coupled differential-difference equations with multiple delay channels’, Automatica, 2010, 46, (5), pp. 902–909 (doi: 10.1016/j.automatica.2010.02.007).
-
-
43)
-
34. Cong, S., Sheng, Z.-B.: ‘On exponential stability conditions of descriptor systems with time-varying delay’, J. Appl. Math., 2012, Art. ID 532912, p. 12.
-
-
44)
- C. Peng , Y.C. Tian . Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay. IET Control Theory Appl. , 9 , 752 - 761
-
1)

Related content
