Comparison of several data-driven non-linear system identification methods on a simplified glucoregulatory system example

Comparison of several data-driven non-linear system identification methods on a simplified glucoregulatory system example

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, several advanced data-driven non-linear identification techniques are compared on a specific problem: a simplified glucoregulatory system modelling example. This problem represents a challenge in the development of an artificial pancreas for Type 1 diabetes mellitus treatment, since for this application good non-linear models are needed to design accurate closed-loop controllers to regulate the glucose level in the blood. Block-oriented as well as state-space models are used to describe both the dynamics and the non-linear behaviour of the insulin–glucose system, and the advantages and drawbacks of each method are pointed out. The obtained non-linear models are accurate in simulating the patient's behaviour, and some of them are also sufficiently simple to be considered in the implementation of a model-based controller to develop the artificial pancreas.


    1. 1)
    2. 2)
      • 2. Giri, F., Bai, E.W. (Eds.): ‘Block-oriented nonlinear system identification’ (Springer, 2010).
    3. 3)
      • 3. Verdult, V.: ‘Nonlinear system identification: a state-space approach’. PhD Thesis, University of Twente, 2002.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 7. Bergman, R.N., Ider, Y.Z., Bowden, C.R., Cobelli, C.: ‘Quantitative estimation of insulin sensitivity’, Am. J. Physiol., 1979, 236, (6), pp. E667E677.
    8. 8)
    9. 9)
    10. 10)
      • 10. Abu-Rmileh, A., Schoukens, J.: ‘Frequency domain analysis of nonlinear glucose simulation models’. in 8th IFAC Symp. on Biological and Medical Systems, Budapest, Hungary, 2012, pp. 2833.
    11. 11)
      • 11. Cerone, V., Piga, D., Regruto, D., Berehanu, S.: ‘LPV identification of the glucose-insulin dynamics in type I diabetes’. in Sixteenth IFAC Symp. on System Identification, Brussels, Belgium, 2012, pp. 559564.
    12. 12)
      • 12. Ljung, L.: ‘System Identification: Theory for the User’ (2nd edn., Prentice Hall, New Jersey, 1999).
    13. 13)
      • 13. Pintelon, R., Schoukens, J.: ‘System identification: a frequency domain approach’ (2nd edn., Wiley-IEEE Press, 2012).
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Kollár, I.: Frequency Domain System Identificaton Toolbox for Matlab’ (Gamax Ltd, Budapest, 2004–2009).
    19. 19)
    20. 20)
      • 20. Hunter, W.I., Korenberg, M.J.: ‘The identification of nonlinear biological systems: Wiener and Hammerstein cascade models’, Biol. Cybern., 1986, 55, (2-3), pp. 135144.
    21. 21)
      • 21. Zhu, Y.C.: ‘Distillation column identification for control using Wiener model’. in American Control Conf., San Diego, USA, 1999, pp. 34623466.
    22. 22)
    23. 23)
      • 23. Hastie, T., Tibshirani, R., Friedman, J.: ‘The elements of statistical learning: data mining, inference and prediction’ (Springer-Verlag, 2009).
    24. 24)
      • 24. Heuberger, P.S.C., Van den Hof, P.M.J., Wahlberg, B. (Eds.): ‘Modelling and identification with rational orthogonal basis functions’ (Springer, London, 2005).
    25. 25)
    26. 26)
      • 26. Tiels, K., Schoukens, J.: ‘Identifying a Wiener system using a variant of the Wiener G-Functionals’. in 50th IEEE Conf. Decision and Control and European Control Conf. (CDC-ECC11), Orlando, FL, USA, 2011, pp. 57805785.
    27. 27)
      • 27. Paduart, J.: ‘Identification of Nonlinear Systems using Polynomial Nonlinear State Space Models’. PhD Thesis, Vrije Universiteit Brussel, 2008.
    28. 28)
    29. 29)
    30. 30)
      • 30. Vapnik, V.: ‘Statistical learning theory’ (Wiley, 1998).
    31. 31)
      • 31. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: ‘Least squares support vector machinesWorld Scientific, (Singapore, 2002).
    32. 32)

Related content

This is a required field
Please enter a valid email address