© The Institution of Engineering and Technology
This study addresses the output feedback stabilisation problem of discrete-time linear systems with input delay. By viewing the difference between the current input and the delayed input as a special disturbance, full- and reduced-order extended state observers are constructed, respectively, to estimate both the state and the disturbance simultaneously. Then the composite control laws are synthesised to actively compensate the input delay by using the state and disturbance estimates. Different from existing predictor-based control approaches, the proposed controllers are memoryless, and the past input information are thus not needed. Moreover, it can be observed that the information on the size of the input delay is not involved in either the observers or the controllers. Finally, simulation results are provided to illustrate the advantages and effectiveness of the proposed approaches.
References
-
-
1)
-
1. Xia, Y., Fu, M., Liu, G.-P.: ‘Analysis and synthesis of networked control systems’ (Springer-Verlag, Berlin Heidelberg, 2011).
-
2)
-
2. Zhang, W.: ‘Stability analysis of networked control systems’. PhD thesis, Case Western Reserve University, Case Western Reserve University, Department of Electrical Engineering and Computer Science, 2001.
-
3)
-
H.S. Park ,
Y.H. Kim ,
D.S. Kim ,
W.H. Kwon
.
A scheduling method for network-based control systems.
IEEE Trans. Control Syst. Technol.
,
3 ,
318 -
330
-
4)
-
B.Y. Zhang ,
S.Y. Xu ,
Y. Zhou
.
Improved stability criterion and its applications in delayed controller design for discrete time systems.
Automatica
,
2963 -
2967
-
5)
-
D. Yue
.
Robust stabilization of uncertain systems with unknown input delay.
Automatica
,
2 ,
331 -
336
-
6)
-
D. Yue ,
Q.-L. Han ,
J. Lam
.
Network-based robust H∞ control of systems with uncertainty.
Automatica
,
6 ,
999 -
1007
-
7)
-
17. Yue, D., Tian, E., Wang, Z., Lam, J.: ‘Stabilization of systems with probabilistic interval input delays and its applications to networked control systems’, IEEE Trans. Syst. Man Cybern.-Part A: Syst. Humans, 2009, 39, (4), pp. 939–945 (doi: 10.1109/TSMCA.2009.2019875).
-
8)
-
H. Chen ,
X. Zheng
.
On improved robust stabilization of uncertain systems with unknown input delay.
Automatica
,
6 ,
1067 -
1072
-
9)
-
9. Gonzalez, A., Sala, A., Garcia, P., Albertos, P.: ‘Robustness analysis of discrete predictor-based controllers for input-delay systems’, Int. J. Syst. Sci., 2013, 44, (2), pp. 232–239 (doi: 10.1080/00207721.2011.600469).
-
10)
-
N. Poursafar ,
H. Taghirad ,
M. Haeri
.
Model predictive control of non-linear discrete time systems: a linear matrix inequality approach.
IET Control Theory Appl.
,
10 ,
1922 -
1932
-
11)
-
19. Zhou, B., Lin, Z., Duan, G.: ‘Truncated predictor feedback for linear systems with long time-varying input delays’, Automatica, 2012, 48, (10), pp. 2387–2399 (doi: 10.1016/j.automatica.2012.06.032).
-
12)
-
22. Zhou, B., Li, Z., Lin, Z.: ‘Observer based output feedback control of linear systems with input and output delays’, Automatica, 2013, 49, (7), pp. 2039–2052 (doi: 10.1016/j.automatica.2013.03.031).
-
13)
-
D.S. Kim ,
Y.S. Lee ,
W.H. Kwon ,
H.S. Park
.
Maximum allowable delay bounds of networked control systems.
Control Eng. Practice
,
1301 -
1313
-
14)
-
R.C. Luo ,
L.Y. Chung
.
Stabilization for linear uncertain system with time latency.
IEEE Trans. Ind. Electron.
,
4 ,
905 -
910
-
15)
-
W.H. Kwon ,
A.E. Pearson
.
Feedback stabilization of linear systems with delayed control.
IEEE Trans. Autom. Control
,
2 ,
266 -
269
-
16)
-
Y.S. Moon ,
P. Park ,
W.H. Kwon
.
Robust stabilization of uncertain input-delayed systems using reduction method.
Automatica
,
2 ,
307 -
312
-
17)
-
17. Niculescu, S.I.: ‘Delay effects on stability: a robust control approach’ (Springer-Verlag, London, 2001).
-
18)
-
Y. Xia ,
G. Liu ,
P. Shi ,
J. Chen ,
D. Rees ,
J. Liang
.
Sliding mode control of uncertain linear discrete time systems with input delay.
IET Control Theory Appl.
,
4 ,
1169 -
1175
-
19)
-
26. Gonzalez, A., Sala, A., Albertos, P.: ‘Predictor-based stabilization of discrete time-varying input-delay systems’, Automatica, 2012, 48, (2), pp. 454–457 (doi: 10.1016/j.automatica.2011.10.005).
-
20)
-
20. Gonzalez, A.: ‘Robust stabilization of linear discrete-time systems with time-varying input delay’, Automatica, 2013, 49, (9), pp. 2919–2922 (doi: 10.1016/j.automatica.2013.05.031).
-
21)
-
21. Zhou, B.: ‘Truncated predictor feedback for time-delay systems’ (Springer-Verlag, Heidelberg, Germany, 2014).
-
22)
-
22. Zhou, B.: ‘Observer based output feedback control of discrete-time linear systems with input and output delays’, Int. J. Control, 2014, 87, (11), pp. 2252–2272..
-
23)
-
23. Hespanha, J.P.: ‘Linear systems theory’ (Princeton University Press, Princeton, New Jersey, 2009).
-
24)
-
24. Fantoni, I., Lozano, R.: ‘Non-linear control for underactuated mechanical systems’ (Springer, UK, 2002).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0455
Related content
content/journals/10.1049/iet-cta.2014.0455
pub_keyword,iet_inspecKeyword,pub_concept
6
6