© The Institution of Engineering and Technology
This study addresses the output feedback stabilisation problem of discretetime linear systems with input delay. By viewing the difference between the current input and the delayed input as a special disturbance, full and reducedorder extended state observers are constructed, respectively, to estimate both the state and the disturbance simultaneously. Then the composite control laws are synthesised to actively compensate the input delay by using the state and disturbance estimates. Different from existing predictorbased control approaches, the proposed controllers are memoryless, and the past input information are thus not needed. Moreover, it can be observed that the information on the size of the input delay is not involved in either the observers or the controllers. Finally, simulation results are provided to illustrate the advantages and effectiveness of the proposed approaches.
References


1)

1. Xia, Y., Fu, M., Liu, G.P.: ‘Analysis and synthesis of networked control systems’ (SpringerVerlag, Berlin Heidelberg, 2011).

2)

2. Zhang, W.: ‘Stability analysis of networked control systems’. PhD thesis, Case Western Reserve University, Case Western Reserve University, Department of Electrical Engineering and Computer Science, 2001.

3)

H.S. Park ,
Y.H. Kim ,
D.S. Kim ,
W.H. Kwon
.
A scheduling method for networkbased control systems.
IEEE Trans. Control Syst. Technol.
,
3 ,
318 
330

4)

B.Y. Zhang ,
S.Y. Xu ,
Y. Zhou
.
Improved stability criterion and its applications in delayed controller design for discrete time systems.
Automatica
,
2963 
2967

5)

D. Yue
.
Robust stabilization of uncertain systems with unknown input delay.
Automatica
,
2 ,
331 
336

6)

D. Yue ,
Q.L. Han ,
J. Lam
.
Networkbased robust H∞ control of systems with uncertainty.
Automatica
,
6 ,
999 
1007

7)

17. Yue, D., Tian, E., Wang, Z., Lam, J.: ‘Stabilization of systems with probabilistic interval input delays and its applications to networked control systems’, IEEE Trans. Syst. Man Cybern.Part A: Syst. Humans, 2009, 39, (4), pp. 939–945 (doi: 10.1109/TSMCA.2009.2019875).

8)

H. Chen ,
X. Zheng
.
On improved robust stabilization of uncertain systems with unknown input delay.
Automatica
,
6 ,
1067 
1072

9)

9. Gonzalez, A., Sala, A., Garcia, P., Albertos, P.: ‘Robustness analysis of discrete predictorbased controllers for inputdelay systems’, Int. J. Syst. Sci., 2013, 44, (2), pp. 232–239 (doi: 10.1080/00207721.2011.600469).

10)

N. Poursafar ,
H. Taghirad ,
M. Haeri
.
Model predictive control of nonlinear discrete time systems: a linear matrix inequality approach.
IET Control Theory Appl.
,
10 ,
1922 
1932

11)

19. Zhou, B., Lin, Z., Duan, G.: ‘Truncated predictor feedback for linear systems with long timevarying input delays’, Automatica, 2012, 48, (10), pp. 2387–2399 (doi: 10.1016/j.automatica.2012.06.032).

12)

22. Zhou, B., Li, Z., Lin, Z.: ‘Observer based output feedback control of linear systems with input and output delays’, Automatica, 2013, 49, (7), pp. 2039–2052 (doi: 10.1016/j.automatica.2013.03.031).

13)

D.S. Kim ,
Y.S. Lee ,
W.H. Kwon ,
H.S. Park
.
Maximum allowable delay bounds of networked control systems.
Control Eng. Practice
,
1301 
1313

14)

R.C. Luo ,
L.Y. Chung
.
Stabilization for linear uncertain system with time latency.
IEEE Trans. Ind. Electron.
,
4 ,
905 
910

15)

W.H. Kwon ,
A.E. Pearson
.
Feedback stabilization of linear systems with delayed control.
IEEE Trans. Autom. Control
,
2 ,
266 
269

16)

Y.S. Moon ,
P. Park ,
W.H. Kwon
.
Robust stabilization of uncertain inputdelayed systems using reduction method.
Automatica
,
2 ,
307 
312

17)

17. Niculescu, S.I.: ‘Delay effects on stability: a robust control approach’ (SpringerVerlag, London, 2001).

18)

Y. Xia ,
G. Liu ,
P. Shi ,
J. Chen ,
D. Rees ,
J. Liang
.
Sliding mode control of uncertain linear discrete time systems with input delay.
IET Control Theory Appl.
,
4 ,
1169 
1175

19)

26. Gonzalez, A., Sala, A., Albertos, P.: ‘Predictorbased stabilization of discrete timevarying inputdelay systems’, Automatica, 2012, 48, (2), pp. 454–457 (doi: 10.1016/j.automatica.2011.10.005).

20)

20. Gonzalez, A.: ‘Robust stabilization of linear discretetime systems with timevarying input delay’, Automatica, 2013, 49, (9), pp. 2919–2922 (doi: 10.1016/j.automatica.2013.05.031).

21)

21. Zhou, B.: ‘Truncated predictor feedback for timedelay systems’ (SpringerVerlag, Heidelberg, Germany, 2014).

22)

22. Zhou, B.: ‘Observer based output feedback control of discretetime linear systems with input and output delays’, Int. J. Control, 2014, 87, (11), pp. 2252–2272..

23)

23. Hespanha, J.P.: ‘Linear systems theory’ (Princeton University Press, Princeton, New Jersey, 2009).

24)

24. Fantoni, I., Lozano, R.: ‘Nonlinear control for underactuated mechanical systems’ (Springer, UK, 2002).
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2014.0455
Related content
content/journals/10.1049/ietcta.2014.0455
pub_keyword,iet_inspecKeyword,pub_concept
6
6