access icon free Gaussian mixture regression and local linear network model for data-driven estimation of air mass

The conventional approaches for modelling of charge cycle in combustion engines are based on first principles. In this approaches, it is necessary to estimate different parameters in engine, which is very difficult to implement in real-time. In addition, it requires a high parameterisation effort because of a variety of engine characteristics. The model is further used in engine control unit to improve the efficiency of the combustion. Moreover, it can be used for estimation of some physical variables in engine to increase the performance of the controller. It also avoids the installation of extra sensors and reduces the costs of production. In this study, two different data-driven modelling methods for estimation of air mass are investigated. They also offer a flexible modelling approach considering various options for equipment as well as sensors and actuators in the engines. Both data-driven methods, the Gaussian mixture regression (GMR) and the local linear model tree (LOLIMOT) algorithm, allow a flexible modelling with a high input space dimensionality, with sparsity of data, a good interpretability and also offer possibilities of adaptation and local optimisation. While the GMR uses a statistical approaches to train the model, in the LOLIMOT an incremental, heuristic approach is used. Both methods are applied to the data obtained from a spark-ignition engine and the results are compared and discussed.

Inspec keywords: internal combustion engines; Gaussian processes; mixture models; regression analysis; ignition

Other keywords: air mass; combustion engines; high input space dimensionality; Gaussian mixture regression; data-driven estimation; spark-ignition engine; local linear model tree algorithm; GMR; engine control unit; flexible modelling approach; parameter estimation; local linear network model; statistical approach; data-driven modelling method; LOLIMOT

Subjects: Control of heat systems; Other topics in statistics; Statistics; Engines; Heat and thermodynamic processes (mechanical engineering); Control technology and theory (production)

References

    1. 1)
    2. 2)
      • 37. Draper, N.R., Smith, H.: ‘Applied regression analysis’ (Wiley-Interscience, 1998, 3rd edn.).
    3. 3)
    4. 4)
      • 13. Klein, P., Grüter, R., Loffeld, O.: ‘Real-time estimation of the exhaust gas recirculation ratio based on cylinder pressure signals’, SAE Technical Paper 2007-01-0493, 2007.
    5. 5)
      • 3. Grizzle, J., Cook, J., Milam, W.: ‘Improved cylinder air charge estimation for transient air fuel ratio control’. Proc. of the American Control Conf., 1994.
    6. 6)
    7. 7)
      • 15. Haghani, A.: ‘Data-driven design of fault diagnosis systems – nonlinear multimode processes’ (Springer, 2014).
    8. 8)
    9. 9)
      • 22. Yin, S., Wang, G., Karimi, H.: ‘Data-driven design of robust fault detection system for wind turbines’, Mechatronics, 2013, 11, (9), pp. 298306.
    10. 10)
      • 24. Haghani, A., Ding, S., Hao, H., Yin, S., Jeinsch, T.: ‘An approach for multimode dynamic process monitoring using Bayesian inference’. Eighth IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes, Mexico City, August 2012.
    11. 11)
      • 11. Nijs, M., Sternberg, P.: ‘Luftpfadmodell-VVT: Vorhaben Nr. 938, Luftpfadmodell für variable Ventiltriebe; Abschlussbericht’. Forschungsvereinigung Verbrennungskraftmaschinen e.V, FVV, 2010.
    12. 12)
      • 16. Yin, S., Ding, S., Zhang, P., Haghani, A., Naik, A.: ‘Study on modifications of PLS approach for process monitoring’. Proc. of the 18th IFAC World Congress, Milano Italy, August 2011.
    13. 13)
    14. 14)
      • 8. Le Solliec, G., Chauvin, J., Corde, G.: ‘Experimental airpath control of a turbocharged s.i. engine with valve timing actuators’. Proc. of 5th IFAC Symp. on Advances in Automotive Control, 2007, 2007.
    15. 15)
      • 27. Haghani, A., Ding, S., Esch, J., Hao, H.: ‘Data-driven quality monitoring and fault detection for multimode nonlinear processes’. 51st IEEE Conf. on Decision and Control, Maui, Hawaii, December 2012.
    16. 16)
    17. 17)
      • 32. Mardia, K., Kent, J., Bibby, J.: ‘Multivariate analysis’ (Academic Press, 1979).
    18. 18)
    19. 19)
      • 4. Lecointe, B., Monnier, G.: ‘Downsizing a gasoline engine using turbocharging with direct injection’, SAE 2003 World Congress & Exhibition, Technical Paper 2003-01-0542, 2003.
    20. 20)
      • 30. Kolewe, B., Haghani, A., Beckmann, R., Noack, R., Jeinsch, T.: ‘Data-driven estimation of air mass using gaussian mixture regression’. Proc. of IEEE Int. Symp. on Industrial Electronics, Istanbul 1014, 2014.
    21. 21)
      • 7. Jankovic, M.: ‘Nonlinear control in automotive engine applications’. Proc. of 15th Int. Symp. on Mathematical Theory of Networks and Systems, 2002.
    22. 22)
    23. 23)
    24. 24)
      • 10. Becker, M., Kienzle, D., Shutty, J., Wenzel, W.: ‘Estimation on parameters in the gas exchange path by valuation of the cylinder pressure’, MTZ Worldwide, 2012, 73, (7–8), pp. 4044.
    25. 25)
      • 33. Sung, H.: ‘Gaussian Mixture Regression and Classification’, PhD thesis, Rice University, Houston, Texas, 2004.
    26. 26)
      • 35. Nelles, O., Isermann, R.: ‘Basis function networks for interpolation of local linear models’. Proc. of the 35th IEEE Conf. on Decision and Control, 1996, vol. 1, pp. 470475.
    27. 27)
      • 31. McLachlan, G., Peel, D.: ‘Finite mixture models’ (Wiley, 2004).
    28. 28)
      • 1. Merker, G.P., Schwarz, C., Stiesch, G., Otto, F.: ‘Simulating combustion’ (Springer DE, Berlin, Heidelberg, 2006).
    29. 29)
      • 18. Ding, S., Zhang, P., Jeinsch, T., Ding, E., Engel, P., Gui, W.: ‘A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis’. Proc. of the 18th IFAC World Congress, Milano, Italy, August 2011.
    30. 30)
      • 12. Shutty, W.W.M.B.J., Kienzel, D.: ‘Air system management to improve a diesel engine’, SAE Technical Paper 2011-01-1829, 2011.
    31. 31)
      • 25. Nentwig, M., Mercorelli, P.: ‘Throttle valve control using an inverse local linear model tree based on a fuzzy neural network’. Seventh IEEE Int. Conf. on Cybernetic Intelligent Systems, 2008.
    32. 32)
      • 29. Trajkovic, S., Tunestål, P., Johansson, B.: ‘Simulation of a pneumatic hybrid powertrain with VVT in GT-Power and comparison with experimental data’, SAE Technical Paper Series, Society of Automotive Engineers, 2009.
    33. 33)
      • 9. Leroy, T., Chauvin, J., Petit, N.: ‘Airpath control of a SI engine with variable valve timing actuators’. American Control Conf., 2008, June 2008, pp. 20762083.
    34. 34)
    35. 35)
      • 5. Wolters, P., Salber, W., Geiger, W., Duesmann, J., Dilthey, J.: ‘Controlled auto ignition combustion process with an electromechanical valve train’. SAE Technical Paper 2003-01-0032, 2003.
    36. 36)
      • 34. Murray-Smith, R., Murray-Smith, M.-S., Murray-Smith, R.: ‘Multiple model approaches to nonlinear modelling and control’ (CRC Press, Boca Raton, Florida, 1997).
    37. 37)
      • 2. Heywood, J.B.: ‘Internal combustion engine fundamentals’ (McGraw-Hill, New York, 1988).
    38. 38)
      • 36. Nelles, O.: ‘Nonlinear system identification – from classical approaches to neural networks and fuzzy models’ (Springer, Berlin, Heidelberg, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0213
Loading

Related content

content/journals/10.1049/iet-cta.2014.0213
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading