access icon free Robust synchronisation of networked Lagrangian systems and its applications to multi-robot teleoperation

This study studies robust synchronisation for networked Lagrangian systems under dynamic uncertainties and communication delays. Using weighted storage functions, the authors propose a robust control scheme to guarantee that networked Lagrangian systems achieve ultimately bounded solutions over strongly connected communication graphs. Since the developed control system can ensure synchronous action in the absence of a common trajectory, the robust control algorithm is applied for bilateral teleoperations with multiple remote robots. The ultimate boundedness of the solutions can enable the teleoperation system to account for the presence of uncertain dynamics when a human operator intermittently intervenes on local robots. Numerical examples of a group of two-link non-linear robotic systems are presented to validate the efficacy of the developed control algorithms.

Inspec keywords: uncertain systems; robust control; telerobotics; delays; trajectory control; synchronisation; graph theory; multi-robot systems; networked control systems

Other keywords: communication graphs; multiple remote robots; robust synchronisation; multirobot teleoperation; communication delays; weighted storage functions; networked Lagrangian systems; common trajectory; robust control; bilateral teleoperations; dynamic uncertainties

Subjects: Stability in control theory; Distributed parameter control systems; Combinatorial mathematics; Telerobotics; Spatial variables control

References

    1. 1)
      • 13. Slotine, J., Wang, W.: ‘A study of synchronization and group cooperation using partial contraction theory’. in Cooperative Control, ser. Lecture Notes in Control and Information Sciences, Kumar, V., Leonard, N. E., Morse, A. S., Eds., vol. 309, Berlin, Springer-Verlag, 2005, pp. 207228.
    2. 2)
      • 5. Liu, Y.-C., Chopra, N.: ‘Synchronization of networked robotic systems on strongly connected graphs’. in IEEE Conf. Decision and Control, December 2010, pp. 31943199.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 13. Slotine, J., Wang, W.: ‘A study of synchronization and group cooperation using partial contraction theory’. in Cooperative Control, ser. Lecture Notes in Control and Information Sciences, Kumar, V., Leonard, N. E., Morse, A. S., Eds., vol. 309, Berlin, Springer-Verlag, 2005, pp. 207228.
    7. 7)
    8. 8)
      • 28. Spong, M.W., Hutchinson, S., Vidyasagar, M.: ‘Robot modeling and control’ (John Wiley & Sons, Inc., New York, 2006).
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 32. Hale, J.K., Lunel, S.M.V.: ‘Introduction to functional differential equations’ (Springer-Verlag, New York, 1993).
    21. 21)
      • 22. Liu, Y.-C., Chopra, N.: ‘Robust controlled synchronization of interconnected robotic systems’. in American Control Conf., June 2010, pp. 14341439.
    22. 22)
    23. 23)
      • 29. Godsil, C., Royle, G.: ‘Algebraic graph theory’ (Springer, 2001).
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 11. Chopra, N., Spong, M.: ‘Synchronization of networked lagrangian systems’, in Lagrangian and Hamiltonian Methods for Nonlinear Control, Bullo, F., Fujimoto, K., Eds. Springer Verlag, 2007, pp. 4757.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 35. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, New Jersey, 2002).
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0914
Loading

Related content

content/journals/10.1049/iet-cta.2013.0914
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading