Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Robust static output-feedback controller design against sensor failure for vehicle dynamics

Robust static output-feedback controller design against sensor failure for vehicle dynamics

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the design of a robust fault estimation and fault-tolerant control for vehicle lateral dynamics subject to external disturbance and unknown sensor faults. Firstly, a descriptor state and fault observer is designed to achieve the system state and sensor fault estimates simultaneously. Secondly, based on the information of on-line fault estimates, a robust fault-tolerant controller based on static output-feedback controller (SOFC) design approach is developed. To provide linear matrix inequalities of less conservatism, the results are conducted in the non-quadratic framework dealing with unmeasurable premise variables case. Simulation results show the effectiveness of the proposed control approach when the vehicle road adhesion conditions change and the sideslip angle is unavailable for measurement.

References

    1. 1)
      • 4. Dahmani, H., Chadli, M., Rabhi, A., El Hajjaji, A.: ‘Road curvature estimation for vehicle lane departure detection using a robust Takagi–Sugeno fuzzy observer’. Veh. Syst. Dyn., 2012(doi:10.1080/00423114.2011.642806).
    2. 2)
    3. 3)
    4. 4)
      • 42. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis. a linear matrix inequality approach’ (Wiley, New York, USA, 2001).
    5. 5)
    6. 6)
      • 11. Isermann, R.: ‘Fault-Diagnosis Systems: An Introduction From Fault Detection to Fault Tolerance’ (Springer, 2007).
    7. 7)
      • 29. Ding, S.X.: ‘Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools’ (Springer-Verlag, 2008).
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 36. Shi, S.H., Yuan, Z.H., Zhang, Q.L.: ‘Fault-tolerant H filter design of a class of switched systems with sensor failures’, Int. J. Innov. Comput. Inf. Control, 2009, 5, (11A), pp. 38273838.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 20. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’. 15, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994.
    24. 24)
      • 9. Mufeed, M.M., Jiang, J., Zhang, Z.: ‘Active fault tolerant control systems’, Stochastic Analysis and Synthesis’, (Springer, 2003).
    25. 25)
    26. 26)
      • 46. Mozelli, L.A., Palhares, R.M.: ‘Less conservative H∞ fuzzy control for discrete-time Takagi–Sugeno Systems’, Math. Prob. Eng., 2011, Article ID 361640.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 2. Gao, Z.F., Jiang, B., Qi, R.Y., Xu, Y.F., Cheng, Y.H.: ‘Fuzzy observer design for near space vehicle with application to sensor fault estimation’, ICIC Express Lett., 2010, 4, (1), pp. 177182.
    32. 32)
    33. 33)
    34. 34)
      • 26. Gao, Z., Shi, X., Ding, S.X.: ‘Fuzzy state-disturbance observer design for T–S fuzzy systems with application to sensor fault estimation’, IEEE Trans. SMC B., 2008, 38, (3), pp. 875880.
    35. 35)
      • 15. Aouaouda, S., Chadli, M., Shi, P., Karimi, H.R.: ‘Discrete-time H/H sensor fault detection observer design for nonlinear systems with parameter uncertainty’, Int. J. Robust Nonlinear Control, 2013, doi:10.1002/rnc.3089.
    36. 36)
      • 28. Gertler, J.J.: ‘Fault Detection and Diagnosis in Engineering Systems’ (Marcel Dekker, 1998).
    37. 37)
    38. 38)
    39. 39)
      • 40. Wang, H., Wang, J., Liu, J., Lam, J.: ‘Iterative LMI approach for robust fault detection observer design’. Proc. of the 42nd IEEE Conf. on Decision And Control, Maui Hawaii, USA, December 2003.
    40. 40)
      • 1. Lin, M., popov, M., Mcwilliam, S.: ‘Stability and performance studies of driver-vehicle systems with electronic chassis control’, Veh. Syst. Dyn., 2004, 41, (2), pp. 477486.
    41. 41)
      • 6. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: ‘Diagnosis and Fault-Tolerant Control’ (Springe-Verlag, Berlin, 2006).
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0709
Loading

Related content

content/journals/10.1049/iet-cta.2013.0709
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address