access icon free Design and implementation of an electromagnetic levitation system for active magnetic bearing wheels

In this study, an electromagnetic levitation system is developed as a prototype for developing active magnetic bearing wheels. The main mechanical parts of the electromagnetic levitation system consists of a rotor, a shaft, a cover and a base. A meaningful electromagnetic force, which is the minimal norm solution to an equation associated with the force and torques of the electromagnetic levitation system, is derived by using the singular value decomposition. A control system using the proportional-integral-derivative controller is developed to levitate the rotor at a target position against the force of gravity and regulate the two gimbal angles of the rotor. The numerical simulation and experimental results on the control of the electromagnetic levitation system are given to demonstrate the validity of the control design presented in this study.

Inspec keywords: magnetic bearings; control system synthesis; prototypes; three-term control; rotors; electromagnetic forces; numerical analysis; singular value decomposition; wheels; torque; shafts; magnetic levitation

Other keywords: singular value decomposition; electromagnetic levitation system control system design; electromagnetic levitation system torques; minimal norm solution; gimbal angle regulation; gravity force; proportional-integral-derivative controller; electromagnetic levitation system design; target position; rotor; prototypes; shaft; numerical simulation; mechanical parts; cover; active magnetic bearing wheels; base; electromagnetic levitation system force; electromagnetic levitation system implementation

Subjects: Numerical analysis; Mechanical variables control; Linear algebra (numerical analysis); Control system analysis and synthesis methods; Mechanical components; Control technology and theory (production)

References

    1. 1)
      • 13. Maxwell, J.C.: ‘A dynamical theory of the electromagnetic field’, Phil. Trans. R. Soc. Lond., 1865, 155, pp. 459512 (doi: 10.1098/rstl.1865.0008).
    2. 2)
      • 5. Mazenc, F., de Queiroz, M.S., Malisoff, M., Gao, F.: ‘Further results on active magnetic bearing control with input saturation’, IEEE Trans. Control Syst. Technol., 2006, 14, (5), pp. 914919 (doi: 10.1109/TCST.2006.876910).
    3. 3)
      • 3. Hong, S.-K., Langari, R.: ‘Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances’, IEEE Trans. Control Syst. Technol., 2000, 8, (2), pp. 366371 (doi: 10.1109/87.826808).
    4. 4)
      • 1. Schweitzer, G., Maslen, E.H.: ‘Magnetic bearings’ (Springer, Berlin, Germany, 2009).
    5. 5)
      • 6. Sivrioglu, S.: ‘Adaptive backstepping for switching control active magnetic bearing system with vibrating base’, IET Control Theory Appl., 2007, 1, (4), pp. 10541059 (doi: 10.1049/iet-cta:20050473).
    6. 6)
      • 12. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (The Johns Hopkins University Press, Maryland, USA, 1996, 3rd edn.).
    7. 7)
      • 8. Tang, J., Fang, J., Wen, W.: ‘Superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel for spacecraft’, IEEE Trans. Appl. Supercond., 2012, 22, (6), p. 5702109 (doi: 10.1109/TASC.2012.2218245).
    8. 8)
      • 14. Ogata, K.: ‘Modern control engineering’ (Prentice-Hall, New Jersey, 1996).
    9. 9)
      • 7. Jugo, J., Lizarraga, I., Arredondo, I.: ‘Nonlinear modelling and analysis of active magnetic bearing systems in the harmonic domain: a case study’, IET Control Theory Appl., 2008, 2, (1), pp. 6171 (doi: 10.1049/iet-cta:20060461).
    10. 10)
      • 2. Trumper, D.L., Olson, S.M., Subrahmanyan, P.K.: ‘Linearizing control of magnetic suspension systems’, IEEE Trans. Control Syst. Technol., 1997, 5, (4), pp. 427438 (doi: 10.1109/87.595924).
    11. 11)
      • 11. Strang, G.: ‘Linear algebra and its applications’ (Harcourt Brace Jovanovich Publishers, Florida, USA, 1988, 3rd edn.).
    12. 12)
      • 4. Lindlau, J.D., Knospe, C.R.: ‘Feedback linearization of an active magnetic bearing with voltage control’, IEEE Trans. Control Syst. Technol., 2002, 10, (1), pp. 2131 (doi: 10.1109/87.974335).
    13. 13)
      • 9. Schuhmann, T., Hofmann, W., Werner, R.: ‘Improving operational performance of active magnetic bearings using kalman filter and state feedback control’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 821829 (doi: 10.1109/TIE.2011.2161056).
    14. 14)
      • 10. Fang, J., Zheng, S., Han, B.: ‘Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG’, IEEE Trans. Instrum. Meas., 2012, 61, (2), pp. 338348 (doi: 10.1109/TIM.2011.2164289).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0450
Loading

Related content

content/journals/10.1049/iet-cta.2013.0450
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading