access icon free Global stabilisation of high-order non-linear systems with time-varying delays

Under the weaker condition on the system non-linearities, this study investigates the problem of global stabilisation by state feedback for a class of high-order non-linear systems with time-varying delays. By using the method of adding a power integrator, a continuous state-feedback controller is successfully designed, and the global asymptotic stability of the resulting closed-loop system is proven with the help of an appropriate Lyapunov–Krasovskii functional. Two simulation examples are given to illustrate the effectiveness of the proposed approach.

Inspec keywords: time-varying systems; nonlinear control systems; state feedback; delay systems; control nonlinearities; Lyapunov methods; asymptotic stability; continuous systems; closed loop systems

Other keywords: system nonlinearities; power integrator; closed-loop system; time-varying delay; continuous state-feedback controller; high-order nonlinear system; Lyapunov–Krasovskii functional; global asymptotic stability

Subjects: Nonlinear control systems; Stability in control theory; Distributed parameter control systems; Time-varying control systems

References

    1. 1)
      • 23. Martinez, L.A., Moog, C.H.: ‘New insights on the analysis of nonlinear time-delay systems: application to the triangular equivalence’, Syst. Control Lett., 2007, 56, pp. 133140 (doi: 10.1016/j.sysconle.2006.08.004).
    2. 2)
      • 14. Lin, W., Pongvuthithum, R.: ‘Adaptive output tracking of inherently nonlinear systems with nonlinear parameterization’, IEEE Trans. Autom. Control, 2003, 48, pp. 17371749 (doi: 10.1109/TAC.2003.817922).
    3. 3)
      • 3. Ye, X.D., Jiang, Z.P.: ‘Adaptive nonlinear design without a priori knowledge of control directions’, IEEE Trans. Autom. Control, 1998, 43, 16171621 (doi: 10.1109/9.736069).
    4. 4)
      • 12. Lin, W., Qian, C.: ‘Adaptive control of nonlinearly parameterized systems: the smooth feedback case’, IEEE Trans. Autom. Control, 2002, 47, 12491266 (doi: 10.1109/TAC.2002.800773).
    5. 5)
      • 32. Sun, Z., Liu, Y., Xie, X.: ‘Global stabilization control design for a class of high-order time-delay nonlinear systems’, Int. J. Innov. Comput. Inf. Control, 2011, 7, pp. 71197130.
    6. 6)
      • 8. Jia, R., Qian, C., Zhai, J.: ‘Semi-global stabilisation of uncertain non-linear systems by homogeneous output feedback controllers’, IET Control Theory Appl., 2012, 6, (1), pp. 165172 (doi: 10.1049/iet-cta.2010.0503).
    7. 7)
      • 13. Lin, W., Pongvuthithum, R.: ‘Nonsmooth adaptive stabilization of cascade systems with nonlinear parameterization via partial-state feedback’, IEEE Trans. Autom. Control, 2003, 48, pp. 18091816 (doi: 10.1109/TAC.2003.817932).
    8. 8)
      • 27. Hua, C.C., Guan, X.P., Shi, P.: ‘Robust backstepping control for a class of time delayed systems’, IEEE Trans. Autom. Control, 2005, 50, pp. 894899 (doi: 10.1109/TAC.2005.849255).
    9. 9)
      • 24. Wang, D., Zhou, D.H., Jin, Y.H.: ‘Nonlinear state predictor for a class of nonlinear time-delay systems’, Int. J. Syst. Sci., 2004, 35, pp. 197210 (doi: 10.1080/00207720410001699219).
    10. 10)
      • 25. Zheng, F., Frank, P.M.: ‘Robust control of uncertain distributed delay systems with application to the stabilization of combustion in rocket motor chambers’, Automatica, 2002, 38, pp. 487497 (doi: 10.1016/S0005-1098(01)00232-1).
    11. 11)
      • 2. Jiang, Z.P., Praly, L.: ‘Design of robust adaptive controllers for nonlinear systems with dynamics uncertainties’, Automatica, 1998, 34, 825840 (doi: 10.1016/S0005-1098(98)00018-1).
    12. 12)
      • 9. Lin, W., Qian, C.: ‘Adding one power integrator: a tool for global stabilization of high order lower-triangular systems’, Syst. Control Lett., 2000, 39, pp. 339351 (doi: 10.1016/S0167-6911(99)00115-2).
    13. 13)
      • 20. Du, H., Qian, C., Frye, M.T., Li, S.: ‘Global finite-time stabilisation using bounded feedback for a class of non-linear systems’, IET Control Theory Appl., 2012, 6, (14), pp. 23262336 (doi: 10.1049/iet-cta.2011.0626).
    14. 14)
      • 11. Lin, W., Qian, C.: ‘Adaptive control of nonlinear parameterized system: a nonsmooth feedback framework’, IEEE Trans. Autom. Control, 2002, 47, pp. 757774 (doi: 10.1109/TAC.2002.1000270).
    15. 15)
      • 7. Wang, N., Xu, W., Chen, F.: ‘Adaptive global output feedback stabilisation of some non-minimum phase nonlinear uncertain systems’, IET Control Theory Appl., 2008, 2, (2), 117125 (doi: 10.1049/iet-cta:20070132).
    16. 16)
      • 34. Qian, C.: ‘A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems’. Proc. 2005 American Control Conf., 2005, pp. 47084715.
    17. 17)
      • 19. Li, J., Qian, C., Ding, S.H.: ‘Global finite-time stabilisation by output feedback for a class of uncertain nonlinear systems’, Int. J. Control, 2010, 83, pp. 22412252 (doi: 10.1080/00207179.2010.511658).
    18. 18)
      • 26. Jiao, X.H., Shen, T.L.: ‘Adaptive control of nonlinear time delay systems: the LaSalle–Razumikhin-based approach’, IEEE Trans. Autom. Control, 2005, 50, pp. 19091913 (doi: 10.1109/TAC.2005.854652).
    19. 19)
      • 18. Sun, Z., Liu, Y.: ‘Adaptive stabilization for a large class of high-order nonlinear uncertain systems’, Int. J. Control, 2009, 82, pp. 12751287 (doi: 10.1080/00207170802549529).
    20. 20)
      • 15. Qian, C., Polendo, J.: ‘A generalized framework for global output feedback stabilization of genuinely nonlinear systems’. The 44th IEEE Conf. on Decision and Control, 2005, pp. 26462651.
    21. 21)
      • 37. Yang, B., Lin, W.: ‘Nonsmooth output feedback design with a dynamics gain for uncertain systems with strong nonlinear it’. Proc. 46th IEEE Conf. on Decision Control, New Orieans, LA, USA, 2007, pp. 34953500.
    22. 22)
      • 22. Chen, J., Xu, D., Shafai, B.: ‘On sufficient conditions for stability independent of delay’, IEEE Trans. Autom. Control, 1995, 40, pp. 16751680 (doi: 10.1109/9.412644).
    23. 23)
      • 29. Hua, C.C., Liu, P.X., Guan, X.P.: ‘Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems’, IEEE Trans. Ind. Electron, 2009, 56, (9), pp. 37233732 (doi: 10.1109/TIE.2009.2025713).
    24. 24)
      • 39. Lehman, B., Verriest, E.: ‘Stability of a continuous stirred reactor with delay in the recycle stream’. Proc. 30th IEEE Conf. on Decision Control, 1991, pp. 18751876.
    25. 25)
      • 31. Wang, J., Hu, J.: ‘Robust adaptive neural control for a class of uncertain non-linear time-delay systems with unknown dead-zone non-linearity’, IET Control Theory Appl., 2011, 5, (15), pp. 17821795 (doi: 10.1049/iet-cta.2010.0633).
    26. 26)
      • 33. Sun, Z., Xie, X., Liu, Z.: ‘Global stabilisation of high-order nonlinear systems with multiple time delays’, Int. J. Control, 2013, 86, (5), pp. 768778 (doi: 10.1080/00207179.2012.760046).
    27. 27)
      • 4. Zhou, J., Wen, C.Y., Zhang, Y.: ‘Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity’, IEEE Trans. Autom. Control, 2006, 51, 504511 (doi: 10.1109/TAC.2005.864200).
    28. 28)
      • 5. Liu, Y., Pan, Z., Shi, S.: ‘Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost’, IEEE Trans. Autom. Control, 2003, 48, pp. 509514 (doi: 10.1109/TAC.2002.808484).
    29. 29)
      • 6. Liu, Y., Zhang, J.: ‘Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero dynamics’, SIAM J. Control Optim., 2006, 45, pp. 885926 (doi: 10.1137/S0363012903439185).
    30. 30)
      • 38. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Englewood Cliffs, 3rd edn., 2002).
    31. 31)
      • 21. Gu, K., Kharitonov, V.L., Chen, J.: ‘Stability of time-delay systems’ (Birkhauser, Berlin, 2003).
    32. 32)
      • 35. Polendo, J., Qian, C.: ‘An expanded method to robust stabilize uncertain nonlinear system’, Commun. Inf. Syst., 2008, 8, (1), pp. 5570.
    33. 33)
      • 10. Lin, W., Qian, C.: ‘A continuous feedback approach to global strong stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2001, 46, 10611079 (doi: 10.1109/9.935058).
    34. 34)
      • 36. Polendo, J., Qian, C.: ‘A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback’, Int. J. Robust Nonlinear Control, 2007, 17, pp. 605629 (doi: 10.1002/rnc.1139).
    35. 35)
      • 16. Qian, C., Lin, W.: ‘Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2006, 51, pp. 14571471 (doi: 10.1109/TAC.2006.880955).
    36. 36)
      • 30. Ito, H., Pepe, P., Jiang, Z.P.: ‘A small-gain condition for iISS of interconnected retarded systems based on Lyapunov Krasovskii functionals’, Automatica, 2010, 46, pp. 16461656 (doi: 10.1016/j.automatica.2010.06.037).
    37. 37)
      • 1. Krstić, M., Kanellakopoulos, I., Kokotović, P.V.: ‘Nonlinear and adaptive control design’ (Wiley, New York, 1995).
    38. 38)
      • 17. Sun, Z., Liu, Y.: ‘Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems’, Automatica, 2007, 43, pp. 17721783 (doi: 10.1016/j.automatica.2007.02.024).
    39. 39)
      • 28. Daniel, W., Li, J.M., Niu, Y.G.: ‘Adaptive neural control for a class of nonlinearly parametric time-delay systems’, IEEE Trans. Neural Netw., 2005, 16, pp. 625635 (doi: 10.1109/TNN.2005.844907).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0435
Loading

Related content

content/journals/10.1049/iet-cta.2013.0435
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading