http://iet.metastore.ingenta.com
1887

Some simple criteria for pinning a Lur’e network with directed topology

Some simple criteria for pinning a Lur’e network with directed topology

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the pinning synchronisation in a network of coupled Lur’e dynamical systems under directed topology. By using tools from M-matrix theory, S-procedure and Lyapunov functional method, some simple pinning criteria in terms of linear matrix inequalities, whose dimensions are just determined by the size of a single Lur’e node, are derived for Lur’e networks with fixed and designed inner coupling matrices, respectively. A selective pinning scheme is proposed for a directed Lur’e network such that the network can be globally asymptotically pinned to a homogeneous state. Simulation results are provided to illustrate the effectiveness of the theoretical analysis.

References

    1. 1)
      • 1. Watts, D.J., Strogatz, S.H.: ‘Collective dynamics of ‘small-world’ networks’, Nature, 1998, 393, pp. 440442 (doi: 10.1038/30918).
    2. 2)
      • 2. Barabási, A.L., Albert, R.: ‘Emergence of scaling in random networks’, Science, 1999, 286, pp. 509512 (doi: 10.1126/science.286.5439.509).
    3. 3)
      • 3. Wu, C.W., Chua, L.O.: ‘Synchronization in an array of linearly coupled dynamical systems’, IEEE Trans. Circuits Syst. I, 1995, 42, (8), pp. 430447 (doi: 10.1109/81.404047).
    4. 4)
      • 4. Pecora, L.M., Carroll, T.L.: ‘Master stability functions for synchronized coupled systems’, Phys. Rev. Lett., 1998, 80, (10), pp. 21092112 (doi: 10.1103/PhysRevLett.80.2109).
    5. 5)
      • 5. Lü, J., Yu, X., Chen, G., Cheng, D.: ‘Characterizing the synchronizability of small-world dynamical networks’, IEEE Trans. Circuits Syst. I, 2004, 51, (4), pp. 787796 (doi: 10.1109/TCSI.2004.823672).
    6. 6)
      • 6. Lü, J., Chen, G.: ‘A time-varying complex dynamical network model and its controlled synchronization criteria’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 841846 (doi: 10.1109/TAC.2005.849233).
    7. 7)
      • 7. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: ‘Synchronization in complex networks’, Phys. Rep., 2008, 469, pp. 93153 (doi: 10.1016/j.physrep.2008.09.002).
    8. 8)
      • 8. Wang, P., Lü, J., Ogorzalek, M. J.: ‘Global relative parameter sensitivities of the feed-forward loops in genetic networks’, Neurocomputing, 2012, 78, pp. 155165 (doi: 10.1016/j.neucom.2011.05.034).
    9. 9)
      • 9. Wang, X.F., Chen, G.: ‘Pinning control of scale-free dynamical networks’, Physica A, 2002, 310, pp. 521531 (doi: 10.1016/S0378-4371(02)00772-0).
    10. 10)
      • 10. Li, X., Wang, X.F., Chen, G.: ‘Pinning a complex dynamical network to its equilibrium’, IEEE Trans. Circuits Syst. I, 2004, 51, (10), pp. 20742087 (doi: 10.1109/TCSI.2004.835655).
    11. 11)
      • 11. Yu, W., Chen, G., Lü, J.: ‘On pinning synchronization of complex dynamical networks’, Automatica, 2009, 45, pp. 429435 (doi: 10.1016/j.automatica.2008.07.016).
    12. 12)
      • 12. Chen, T., Liu, X., Lu, W.: ‘Pinning complex networks by a single controller’, IEEE Trans. Circuits Syst. I, 2007, 54, (6), pp. 13171326 (doi: 10.1109/TCSI.2007.895383).
    13. 13)
      • 13. Lu, Y.Y., Wang, X.F.: ‘Pinning control of directed dynamical networks based on ControlRank’, Int. J. Comput. Math., 2008, 85, (8), pp. 12791286 (doi: 10.1080/00207160701665948).
    14. 14)
      • 14. Zhou, J., Lu, J., Lü, J.: ‘Pinning adaptive synchronization of a general complex dynamical network’, Automatica, 2008, 44, pp. 9961003 (doi: 10.1016/j.automatica.2007.08.016).
    15. 15)
      • 15. Lu, J., Ho, D.W.C., Wang, Z.: ‘Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers’, IEEE Trans. Neural Netw., 2009, 20, (10), pp. 16171629 (doi: 10.1109/TNN.2009.2027810).
    16. 16)
      • 16. Song, Q., Cao, J.: ‘On pinning synchronization of directed and undirected complex dynamical networks’, IEEE Trans. Circuits Syst. I, 2010, 57, (3), pp. 672680 (doi: 10.1109/TCSI.2009.2024971).
    17. 17)
      • 17. Lu, W., Li, X., Rong, Z.: ‘Global stabilization of complex networks with diagraph topologies via a local pinning algorithm’, Automatica, 2010, 46, pp. 116121 (doi: 10.1016/j.automatica.2009.10.006).
    18. 18)
      • 18. Song, Q., Liu, F., Cao, J., Yu, W.: ‘Pinning-controllability analysis of complex networks: An M-Matrix approach’, IEEE Trans. Circuits Syst. I, 2012, 59, (11), pp. 26922701 (doi: 10.1109/TCSI.2012.2190573).
    19. 19)
      • 19. Horn, R.A., Johnson, C.R.: ‘Topics in matrix analysis’ (Cambridge University Press, Cambridge, UK, 1991).
    20. 20)
      • 20. Berman, A., Plemmons, R.J.: ‘Nonnegative matrices in the mathematical sciences’ (SIAM, Philadelphia, PA, 1994).
    21. 21)
      • 21. Song, Q., Cao, J., Yu, W.: ‘Second-order leader-following consensus of nonlinear multi-agent systems via pinning control’, Syst. Control Lett., 2010, 59, pp. 553562 (doi: 10.1016/j.sysconle.2010.06.016).
    22. 22)
      • 22. Wieland, P., Kim, J.S., Allgöwer, F.: ‘On topology and dynamics of consensus among linear high-order agents’, Int. J. Syst. Sci., 2011, 42, (10), pp. 18311842 (doi: 10.1080/00207721003658202).
    23. 23)
      • 23. Song, Q., Liu, F., Cao, J., Yu, W.: ‘M-matrix strategies for pinning-controlled leader-following consensus in multi-agent systems with nonlinear dynamics’, IEEE Trans. Cybern., 2013, doi:10.1109/TSMCB.2012.2227723, in press.
    24. 24)
      • 24. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533 (doi: 10.1109/TAC.2004.834113).
    25. 25)
      • 25. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661 (doi: 10.1109/TAC.2005.846556).
    26. 26)
      • 26. Chen, Y., Lü, J., Lin, Z.: ‘Consensus of discrete-time multi-agent systems with transmission nonlinearity’, Automatica, 2013, 49, pp. 17681775 (doi: 10.1016/j.automatica.2013.02.021).
    27. 27)
      • 27. Wen, G., Duan, Z., Yu, W., Chen, G.: ‘Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach’, Int. J. Robust Nonlinear Control, 2013, 23, (6), pp. 602619 (doi: 10.1002/rnc.2779).
    28. 28)
      • 28. Gazi, V., Passino, K.M.: ‘Stability analysis of swarms’, IEEE Trans. Autom. Control, 2003, 48, (4), pp. 692697 (doi: 10.1109/TAC.2003.809765).
    29. 29)
      • 29. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420 (doi: 10.1109/TAC.2005.864190).
    30. 30)
      • 30. Zhu, J., Lü, J., Yu, X.: ‘Flocking of multi-agent non-holonomic systems with proximity graphs’, IEEE Trans. Circuits Syst. I, 2013, 60, (1), pp. 199210 (doi: 10.1109/TCSI.2012.2215715).
    31. 31)
      • 31. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, PA, 1994).
    32. 32)
      • 32. Park, P.: ‘A revisited Popov criterion for nonlinear Lur’e systems with sector-restrictions’, Int. J. Control, 1997, 68, (3), pp. 461469 (doi: 10.1080/002071797223479).
    33. 33)
      • 33. Yalçin, M.E., Suykens, J.A.K., Vandewalle, J.: ‘Master-slave synchronization of Lur’e systems with time-delay’, Int. J. Bifurcation Chaos, 2001, 11, (6), pp. 17071722 (doi: 10.1142/S021812740100295X).
    34. 34)
      • 34. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Englewood Cliffs, NJ, 2002, 3rd edn.).
    35. 35)
      • 35. Han, Q.L., Yue, D.: ‘Absolute stability of Lur’e systems with time-varying delay’, IET Control Theory Appl., 2007, 1, (3), pp. 854859 (doi: 10.1049/iet-cta:20060213).
    36. 36)
      • 36. Gonzaga, C.A.C., Jungers, M., Daafouz, J.: ‘Stability analysis of discrete-time Lur’e systems’, Automatica, 2012, 48, pp. 22772283 (doi: 10.1016/j.automatica.2012.06.034).
    37. 37)
      • 37. Zhang, Q., Li, Z.: ‘Pinning control of complex Lur’e networks’, Chinese Phys. B, 2009, 18, (6), pp. 21762183 (doi: 10.1088/1674-1056/18/6/011).
    38. 38)
      • 38. Li, Z., Duan, Z., Chen, G.: ‘Global synchronised regions of linearly coupled Lur’e systems’, Int. J. Control, 2011, 84, (2), pp. 216227 (doi: 10.1080/00207179.2010.546882).
    39. 39)
      • 39. Guo, L., Nian, X., Zhao, Y., Duan, Z.: ‘Cluster synchronisation of Lur’e dynamical networks’, IET Control Theory Appl., 2012, 6, (16), pp. 24992508 (doi: 10.1049/iet-cta.2012.0467).
    40. 40)
      • 40. DeLellis, P., Di Bernardo, M.: ‘Adaptive pinning control of complex networks of Lur’e systems’. Proc. 51st IEEE Conf. on Decision and Control, Maui, Hawaii, USA, 2012, pp. 60606064.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0422
Loading

Related content

content/journals/10.1049/iet-cta.2013.0422
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address