Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Some simple criteria for pinning a Lur’e network with directed topology

Some simple criteria for pinning a Lur’e network with directed topology

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the pinning synchronisation in a network of coupled Lur’e dynamical systems under directed topology. By using tools from M-matrix theory, S-procedure and Lyapunov functional method, some simple pinning criteria in terms of linear matrix inequalities, whose dimensions are just determined by the size of a single Lur’e node, are derived for Lur’e networks with fixed and designed inner coupling matrices, respectively. A selective pinning scheme is proposed for a directed Lur’e network such that the network can be globally asymptotically pinned to a homogeneous state. Simulation results are provided to illustrate the effectiveness of the theoretical analysis.

References

    1. 1)
      • 21. Song, Q., Cao, J., Yu, W.: ‘Second-order leader-following consensus of nonlinear multi-agent systems via pinning control’, Syst. Control Lett., 2010, 59, pp. 553562 (doi: 10.1016/j.sysconle.2010.06.016).
    2. 2)
      • 16. Song, Q., Cao, J.: ‘On pinning synchronization of directed and undirected complex dynamical networks’, IEEE Trans. Circuits Syst. I, 2010, 57, (3), pp. 672680 (doi: 10.1109/TCSI.2009.2024971).
    3. 3)
      • 33. Yalçin, M.E., Suykens, J.A.K., Vandewalle, J.: ‘Master-slave synchronization of Lur’e systems with time-delay’, Int. J. Bifurcation Chaos, 2001, 11, (6), pp. 17071722 (doi: 10.1142/S021812740100295X).
    4. 4)
      • 23. Song, Q., Liu, F., Cao, J., Yu, W.: ‘M-matrix strategies for pinning-controlled leader-following consensus in multi-agent systems with nonlinear dynamics’, IEEE Trans. Cybern., 2013, doi:10.1109/TSMCB.2012.2227723, in press.
    5. 5)
      • 9. Wang, X.F., Chen, G.: ‘Pinning control of scale-free dynamical networks’, Physica A, 2002, 310, pp. 521531 (doi: 10.1016/S0378-4371(02)00772-0).
    6. 6)
      • 35. Han, Q.L., Yue, D.: ‘Absolute stability of Lur’e systems with time-varying delay’, IET Control Theory Appl., 2007, 1, (3), pp. 854859 (doi: 10.1049/iet-cta:20060213).
    7. 7)
      • 37. Zhang, Q., Li, Z.: ‘Pinning control of complex Lur’e networks’, Chinese Phys. B, 2009, 18, (6), pp. 21762183 (doi: 10.1088/1674-1056/18/6/011).
    8. 8)
      • 2. Barabási, A.L., Albert, R.: ‘Emergence of scaling in random networks’, Science, 1999, 286, pp. 509512 (doi: 10.1126/science.286.5439.509).
    9. 9)
      • 4. Pecora, L.M., Carroll, T.L.: ‘Master stability functions for synchronized coupled systems’, Phys. Rev. Lett., 1998, 80, (10), pp. 21092112 (doi: 10.1103/PhysRevLett.80.2109).
    10. 10)
      • 19. Horn, R.A., Johnson, C.R.: ‘Topics in matrix analysis’ (Cambridge University Press, Cambridge, UK, 1991).
    11. 11)
      • 31. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, PA, 1994).
    12. 12)
      • 8. Wang, P., Lü, J., Ogorzalek, M. J.: ‘Global relative parameter sensitivities of the feed-forward loops in genetic networks’, Neurocomputing, 2012, 78, pp. 155165 (doi: 10.1016/j.neucom.2011.05.034).
    13. 13)
      • 36. Gonzaga, C.A.C., Jungers, M., Daafouz, J.: ‘Stability analysis of discrete-time Lur’e systems’, Automatica, 2012, 48, pp. 22772283 (doi: 10.1016/j.automatica.2012.06.034).
    14. 14)
      • 28. Gazi, V., Passino, K.M.: ‘Stability analysis of swarms’, IEEE Trans. Autom. Control, 2003, 48, (4), pp. 692697 (doi: 10.1109/TAC.2003.809765).
    15. 15)
      • 22. Wieland, P., Kim, J.S., Allgöwer, F.: ‘On topology and dynamics of consensus among linear high-order agents’, Int. J. Syst. Sci., 2011, 42, (10), pp. 18311842 (doi: 10.1080/00207721003658202).
    16. 16)
      • 6. Lü, J., Chen, G.: ‘A time-varying complex dynamical network model and its controlled synchronization criteria’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 841846 (doi: 10.1109/TAC.2005.849233).
    17. 17)
      • 24. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533 (doi: 10.1109/TAC.2004.834113).
    18. 18)
      • 5. Lü, J., Yu, X., Chen, G., Cheng, D.: ‘Characterizing the synchronizability of small-world dynamical networks’, IEEE Trans. Circuits Syst. I, 2004, 51, (4), pp. 787796 (doi: 10.1109/TCSI.2004.823672).
    19. 19)
      • 12. Chen, T., Liu, X., Lu, W.: ‘Pinning complex networks by a single controller’, IEEE Trans. Circuits Syst. I, 2007, 54, (6), pp. 13171326 (doi: 10.1109/TCSI.2007.895383).
    20. 20)
      • 29. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420 (doi: 10.1109/TAC.2005.864190).
    21. 21)
      • 32. Park, P.: ‘A revisited Popov criterion for nonlinear Lur’e systems with sector-restrictions’, Int. J. Control, 1997, 68, (3), pp. 461469 (doi: 10.1080/002071797223479).
    22. 22)
      • 1. Watts, D.J., Strogatz, S.H.: ‘Collective dynamics of ‘small-world’ networks’, Nature, 1998, 393, pp. 440442 (doi: 10.1038/30918).
    23. 23)
      • 20. Berman, A., Plemmons, R.J.: ‘Nonnegative matrices in the mathematical sciences’ (SIAM, Philadelphia, PA, 1994).
    24. 24)
      • 17. Lu, W., Li, X., Rong, Z.: ‘Global stabilization of complex networks with diagraph topologies via a local pinning algorithm’, Automatica, 2010, 46, pp. 116121 (doi: 10.1016/j.automatica.2009.10.006).
    25. 25)
      • 15. Lu, J., Ho, D.W.C., Wang, Z.: ‘Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers’, IEEE Trans. Neural Netw., 2009, 20, (10), pp. 16171629 (doi: 10.1109/TNN.2009.2027810).
    26. 26)
      • 40. DeLellis, P., Di Bernardo, M.: ‘Adaptive pinning control of complex networks of Lur’e systems’. Proc. 51st IEEE Conf. on Decision and Control, Maui, Hawaii, USA, 2012, pp. 60606064.
    27. 27)
      • 25. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661 (doi: 10.1109/TAC.2005.846556).
    28. 28)
      • 18. Song, Q., Liu, F., Cao, J., Yu, W.: ‘Pinning-controllability analysis of complex networks: An M-Matrix approach’, IEEE Trans. Circuits Syst. I, 2012, 59, (11), pp. 26922701 (doi: 10.1109/TCSI.2012.2190573).
    29. 29)
      • 3. Wu, C.W., Chua, L.O.: ‘Synchronization in an array of linearly coupled dynamical systems’, IEEE Trans. Circuits Syst. I, 1995, 42, (8), pp. 430447 (doi: 10.1109/81.404047).
    30. 30)
      • 27. Wen, G., Duan, Z., Yu, W., Chen, G.: ‘Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach’, Int. J. Robust Nonlinear Control, 2013, 23, (6), pp. 602619 (doi: 10.1002/rnc.2779).
    31. 31)
      • 26. Chen, Y., Lü, J., Lin, Z.: ‘Consensus of discrete-time multi-agent systems with transmission nonlinearity’, Automatica, 2013, 49, pp. 17681775 (doi: 10.1016/j.automatica.2013.02.021).
    32. 32)
      • 11. Yu, W., Chen, G., Lü, J.: ‘On pinning synchronization of complex dynamical networks’, Automatica, 2009, 45, pp. 429435 (doi: 10.1016/j.automatica.2008.07.016).
    33. 33)
      • 30. Zhu, J., Lü, J., Yu, X.: ‘Flocking of multi-agent non-holonomic systems with proximity graphs’, IEEE Trans. Circuits Syst. I, 2013, 60, (1), pp. 199210 (doi: 10.1109/TCSI.2012.2215715).
    34. 34)
      • 39. Guo, L., Nian, X., Zhao, Y., Duan, Z.: ‘Cluster synchronisation of Lur’e dynamical networks’, IET Control Theory Appl., 2012, 6, (16), pp. 24992508 (doi: 10.1049/iet-cta.2012.0467).
    35. 35)
      • 7. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: ‘Synchronization in complex networks’, Phys. Rep., 2008, 469, pp. 93153 (doi: 10.1016/j.physrep.2008.09.002).
    36. 36)
      • 10. Li, X., Wang, X.F., Chen, G.: ‘Pinning a complex dynamical network to its equilibrium’, IEEE Trans. Circuits Syst. I, 2004, 51, (10), pp. 20742087 (doi: 10.1109/TCSI.2004.835655).
    37. 37)
      • 14. Zhou, J., Lu, J., Lü, J.: ‘Pinning adaptive synchronization of a general complex dynamical network’, Automatica, 2008, 44, pp. 9961003 (doi: 10.1016/j.automatica.2007.08.016).
    38. 38)
      • 34. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Englewood Cliffs, NJ, 2002, 3rd edn.).
    39. 39)
      • 13. Lu, Y.Y., Wang, X.F.: ‘Pinning control of directed dynamical networks based on ControlRank’, Int. J. Comput. Math., 2008, 85, (8), pp. 12791286 (doi: 10.1080/00207160701665948).
    40. 40)
      • 38. Li, Z., Duan, Z., Chen, G.: ‘Global synchronised regions of linearly coupled Lur’e systems’, Int. J. Control, 2011, 84, (2), pp. 216227 (doi: 10.1080/00207179.2010.546882).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0422
Loading

Related content

content/journals/10.1049/iet-cta.2013.0422
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address