http://iet.metastore.ingenta.com
1887

Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control

Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new discrete-time sliding mode control (DSMC) scheme with applications to precise motion control of piezoelectric actuators. Different from existing DSMC algorithms whose implementations rely on the construction of state observers for providing the state feedback, a simple yet effective DSMC strategy is developed based on a discrete-time model without using the state observer. Hence, one distinctive feature of the proposed DSMC lies in that it is very easy to implement. Only a second-order plant model is needed whereas the modelling of piezoelectric non-linearities is not required, which further simplifies the practical implementation process. The local stability of the closed-loop system is proved in theory and the effectiveness of the DSMC is demonstrated by several experimental studies. Results show that the DSMC strategy is superior to proportional-integral-derivative control in terms of transient response speed, positioning accuracy and robustness against external disturbances. The reported method can be extended for precise motion control of other second-order systems as well.

References

    1. 1)
      • 1. Yong, Y.K., Liu, K., Moheimani, S.O.R.: ‘Reducing cross-coupling in a compliant XY nanopositioner for fast and accurate raster scanning’, IEEE Trans. Control Syst. Technol., 2010, 18, (5), pp. 11721179 (doi: 10.1109/TCST.2009.2033201).
    2. 2)
      • 2. Rakotondrabe, M., Ivan, I.A.: ‘Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks’, IEEE Trans. Autom. Sci. Eng., 2011, 8, (4), pp. 824834 (doi: 10.1109/TASE.2011.2157683).
    3. 3)
      • 3. Xu, Q.: ‘Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper’, IEEE Trans. Robot., 2013, 29, (3), pp. 663673 (doi: 10.1109/TRO.2013.2239554).
    4. 4)
      • 4. Janaideh, M.A., Rakheja, S., Su, C.Y.: ‘Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator’, Mechatronics, 2009, 19, (5), pp. 656670 (doi: 10.1016/j.mechatronics.2009.02.008).
    5. 5)
      • 5. Xu, Q.: ‘Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 39273937 (doi: 10.1109/TIE.2012.2206339).
    6. 6)
      • 6. Liaw, H.C., Shirinzadeh, B., Smith, J.: ‘Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation’, Mechatronics, 2008, 18, (2), pp. 111120 (doi: 10.1016/j.mechatronics.2007.09.002).
    7. 7)
      • 7. Wu, Y., Zou, Q.: ‘Robust-inversion-based 2-DOF control design for output tracking: Piezoelectric actuator example’, IEEE Trans. Control Syst. Technol., 2009, 17, (5), pp. 10691082 (doi: 10.1109/TCST.2008.2005111).
    8. 8)
      • 8. Helfrich, B.E., Lee, C., Bristow, D.A., et al: ‘Combined H-feedback control and iterative learning control design with application to nanopositioning systems’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 336351 (doi: 10.1109/TCST.2009.2018835).
    9. 9)
      • 9. Huang, P.K., Shieh, P.H., Lin, F.J., Shieh, H.J.: ‘Sliding-mode control for a two-dimensional piezo-positioning stage’, IET Control Theory Appl., 2007, 1, (4), pp. 11041113 (doi: 10.1049/iet-cta:20060371).
    10. 10)
      • 10. Chen, X., Hisayama, T.: ‘Adaptive sliding-mode position control for piezo-actuated stage’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 39273934 (doi: 10.1109/TIE.2008.926768).
    11. 11)
      • 11. Huang, S., Tan, K.K., Lee, T.H.: ‘Adaptive sliding-mode control of piezoelectric actuators’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 35143522 (doi: 10.1109/TIE.2009.2012450).
    12. 12)
      • 12. Salah, M.H., McIntyre, M.L., Dawson, D.M., Wagner, J.R., Tatlicioglu, E.: ‘Charge feedback-based robust position tracking control for piezoelectric actuators’, IET Control Theory Appl., 2012, 6, (5), pp. 615628 (doi: 10.1049/iet-cta.2010.0568).
    13. 13)
      • 13. Yan, M., Shi, Y.: ‘Robust discrete-time sliding mode control for uncertain systems with time-varying state delay’, IET Control Theory Appl., 2008, 2, (8), pp. 662674 (doi: 10.1049/iet-cta:20070460).
    14. 14)
      • 14. Lin, C.F., Su, W.C., Liu, K.H.: ‘Post-filtering approach to output feedback variable structure control for single-input-single-output sampled-data systems’, IET Control Theory Appl., 2009, 3, (8), pp. 11451154 (doi: 10.1049/iet-cta.2008.0116).
    15. 15)
      • 15. Niu, Y., Ho, D.W.C., Wang, Z.: ‘Improved sliding mode control for discrete-time systems via reaching law’, IET Control Theory Appl., 2010, 4, (11), pp. 22452251 (doi: 10.1049/iet-cta.2009.0296).
    16. 16)
      • 16. Abidi, K., Xu, J.X., Yu, X.: ‘On the discrete-time integral sliding mode control’, IEEE Trans. Autom. Control, 2007, 52, (4), pp. 709715 (doi: 10.1109/TAC.2007.894537).
    17. 17)
      • 17. Xi, Z., Hesketh, T.: ‘Discrete time integral sliding mode control for overhead crane with uncertainties’, IET Control Theory Appl., 2010, 4, (10), pp. 20712081 (doi: 10.1049/iet-cta.2009.0558).
    18. 18)
      • 18. Xu, Q., Li, Y.: ‘Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis’, IEEE Trans. Control Syst. Technol., 2012, 20, (4), pp. 983994 (doi: 10.1109/TCST.2011.2157345).
    19. 19)
      • 19. Xu, J.X., Abidi, K.: ‘Discrete-time output integral sliding-mode control for a piezomotor-driven linear motion stage’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 39173926 (doi: 10.1109/TIE.2008.2003194).
    20. 20)
      • 20. Xu, Q., Li, Y.: ‘Micro-/nanopositioning using model predictive output integral discrete sliding mode control’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 11611170 (doi: 10.1109/TIE.2011.2157287).
    21. 21)
      • 21. Sha, D., Bajic, V.B.: ‘Robust discrete adaptive input-output-based sliding mode controller’, Int. J. Syst. Sci., 2000, 31, (12), pp. 16011614 (doi: 10.1080/00207720050217377).
    22. 22)
      • 22. Lin, C.J., Chen, S.Y.: ‘Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage’, Mechatronics, 2009, 19, (6), pp. 829839 (doi: 10.1016/j.mechatronics.2009.04.007).
    23. 23)
      • 23. Tarokh, M.: ‘A discrete-time adaptive control scheme for robot manipulators’, J. Robot. Syst., 1990, 7, (2), pp. 145166 (doi: 10.1002/rob.4620070203).
    24. 24)
      • 24. Galias, Z., Yu, X.: ‘Euler's discretization of single input sliding-mode control systems’, IEEE Trans. Autom. Control, 2007, 52, (9), pp. 17261730 (doi: 10.1109/TAC.2007.904289).
    25. 25)
      • 25. Veselic, B., Perunicic-Drazenovic, B., Milosavljevic, C.: ‘Improved discrete-time sliding-mode position control using Euler velocity estimation’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 38403847 (doi: 10.1109/TIE.2010.2042416).
    26. 26)
      • 26. Bibian, S., Jin, H.: ‘Time delay compensation of digital control for DC switchmode power supplies using prediction techniques’, IEEE Trans. Power Electron., 2000, 15, (5), pp. 835842 (doi: 10.1109/63.867672).
    27. 27)
      • 27. Elmali, H., Olgac, N.: ‘Implementation of sliding mode control with perturbation estimation (SMCPE)’, IEEE Trans. Control Syst. Technol., 1996, 4, (1), pp. 7985 (doi: 10.1109/87.481770).
    28. 28)
      • 28. Monsees, G.: ‘Discrete-time sliding mode control’. PhD thesis, Delft University of Technology, 2002.
    29. 29)
      • 29. Young, K.D., Utkin, V.I., Ozguner, U.: ‘A control engineer's guide to sliding mode control’, IEEE Trans. Control Syst. Technol., 1999, 7, (3), pp. 328342 (doi: 10.1109/87.761053).
    30. 30)
      • 30. Furuta, K.: ‘Sliding mode control of a discrete system’, Syst. Control Lett., 1990, 14, (2), pp. 145152 (doi: 10.1016/0167-6911(90)90030-X).
    31. 31)
      • 31. Sarpturk, S., Istefanopulos, Y., Kaynak, O.: ‘On the stability of discrete-time sliding mode control systems’, IEEE Trans. Autom. Control, 1987, 32, (10), pp. 930932 (doi: 10.1109/TAC.1987.1104468).
    32. 32)
      • 32. Zhu, Y.: ‘Multivariable system identification for process control’ (Elsevier Science Inc., New York, 2001).
    33. 33)
      • 33. Xu, Q., Jia, M.: ‘Model reference adaptive control with perturbation estimation for a micropositioning system’, IEEE Trans. Control Syst. Technol., 2013, doi: 10.1109/TCST.2013.2248061, in press.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0361
Loading

Related content

content/journals/10.1049/iet-cta.2013.0361
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address