Your browser does not support JavaScript!

Design of a reduced-order non-linear observer for vehicle velocities estimation

Design of a reduced-order non-linear observer for vehicle velocities estimation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a novel reduced-order non-linear observer for vehicle velocities estimation based on vehicle dynamics and Unified Exponential tire model. Yaw rate is chosen to construct the reduced-order observer since it can be conceived as the function of vehicle velocities. The observer is designed such that the error dynamics system is input-to-state stability (ISS), where model errors including mass and CoG variation, and estimation or measurement error of the maximum tire–road friction coefficient are considered as additive disturbance inputs. Then, the condition of the observer gain satisfied is obtained by the ISS analysis and the lower observer gain is obtained through the convex optimisation described by the linear matrix inequalities. The proposed observer requires fewer tuning parameters and thus indicates an easier implementation compared with the existing extended Kalman filter. Simulation results demonstrate the effectiveness of the proposed reduced-order non-linear observer, which is also validated through experimental data from Hongqi vehicle HQ430. Furthermore, its computational efficiency is shown based on the laboratory Field Programmable Gate Array and System on a Programmable Chip testing platform.


    1. 1)
      • 26. Guo, H.Y.: ‘Study on nonlinear observer method for vehicle velocity estimation’. PhD thesis, Jilin University, China, 2010.
    2. 2)
      • 23. Guo, H.Y., Chen, H., Xu, F., Wang, F., Lu, G.L.: ‘Implementaiton of EKF for vehicle velocities estimation on FPGA’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 38233835 (doi: 10.1109/TIE.2012.2208436).
    3. 3)
      • 24. Ogata, K.: ‘Modern control engineering’ (Prentice-Hall, NJ, 20014th edn.).
    4. 4)
      • 12. Antoniou, C., Kondyli, A., Lykogianni, G.M., Gyftodimos, E.: ‘Exploratory assessment of the limiting extended Kalman filter properties’, Transp. Telecommun., 2013, 14, (1), pp. 112 (doi: 10.2478/ttj-2013-0001).
    5. 5)
      • 4. Solmaz, S.: ‘Switched stable control design methodology applied to vehicle rollover prevention based on switched suspension settings’, IET Control Theory Appl., 2011, 5, (9), pp. 11041112 (doi: 10.1049/iet-cta.2010.0361).
    6. 6)
      • 13. Shraim, H., Ananou, B., Fridman, L., Noura, H., Oulasine, M.S.: ‘Sliding mode observers for the estimation of vehicle parameters, force and states of the center of gravity’. Proc. 45th IEEE Conf. Decision and Control, 2006, pp. 16351640.
    7. 7)
      • 2. Boada, B.L., Boada, M.J.L., Diaz, V.: ‘Yaw moment control for vehicle stability in a crosswind’, Int. J. Veh. Des., 2005, 39, (4), pp. 331348 (doi: 10.1504/IJVD.2005.008466).
    8. 8)
      • 5. Cheli, F.C., Sabbioni, E., Pesce, M., Melizi, S.: ‘Methodology for vehicle sideslip angle identification: comparison with experimental data’, Veh. Syst. Dyn., 2007, 45, (6), pp. 549563 (doi: 10.1080/00423110601059112).
    9. 9)
      • 16. Gao, B.Z., Chen, H., Li, J., Tian, L., Sanada, K.: ‘Observer-based feedback control during torque phase of clutch-to clutch shift process’, Int. J. Veh. Des., 2012, 58, (1), pp. 93108 (doi: 10.1504/IJVD.2012.045925).
    10. 10)
      • 10. Baffet, G., Charara, A., Lechner, D.: ‘Estimation of vehicle sideslip, tire force and wheel cornering stiffness’, Control Eng. Pract., 2009, 17, (11), pp. 12551264 (doi: 10.1016/j.conengprac.2009.05.005).
    11. 11)
      • 7. Zhao, L.H., Liu, Z.Y., Chen, H.: ‘Design of nonlinear observer for vehicle velocity estimation and experiments’, IEEE Trans. Control Syst. Technol., 2011, 19, (3), pp. 664672 (doi: 10.1109/TCST.2010.2043104).
    12. 12)
      • 8. de Marina, H.G., Pereda, F.J., Giron-Sierra, J.M., Espinosa, F.: ‘UAV attitude estimation using unscented Kalman filter and TRIAD,’ IEEE Trans. Ind. Electron., 2012, 59, (11), pp. 44654474 (doi: 10.1109/TIE.2011.2163913).
    13. 13)
      • 18. Pacejk, H.B.: ‘Tyre and vehicle dynamics’ (Buterworth–Heinemann, London, 2002).
    14. 14)
      • 15. Grip, H.F., Imsland, L., Johansen, T.A., Fossen, T.I., Kalkkuhl, J.C., Suissa, A.: ‘Nonlinear vehicle side slip estimation with friction adaptation’, Automatica, 2008, 44, pp. 611622 (doi: 10.1016/j.automatica.2007.06.017).
    15. 15)
      • 22. Needham, T.: ‘A visual explanation of Jensen's inequality’, Am. Math. Mon., 1993, 100, (8), pp. 768771 (doi: 10.2307/2324783).
    16. 16)
      • 19. Guo, K.H., Lei, R.: ‘A unified semi-empirical tire model with higher accuracy and less parameters’. Proc. SAE Int. Congress and Exposition, Detroit, Michigan, USA1999, paper no. 1999–01–0785.
    17. 17)
      • 27. Chen, H., Xu, F., Xi, Y.: ‘Field programmable gate array/system on a programmable chip based implementation of model predictive controller,’ IET Control Theory Appl., 2012, 6, (8), pp. 10551063 (doi: 10.1049/iet-cta.2010.0443).
    18. 18)
      • 9. Li, L., Song, J., Li, H.Z., Zhang, X.L.: ‘A variable structure adaptive extended Kalman filter for vehicle slip angle estimation’, Int. J. Veh. Des., 2011, 56, (1/2/3/4), pp. 161185 (doi: 10.1504/IJVD.2011.043263).
    19. 19)
      • 6. Stéphant, J., Charara, A., Meizel, D.: ‘Evaluation of a sliding mode observer for vehicle sideslip angle’, Control Eng. Pract., 2007, 7, (15), pp. 803812 (doi: 10.1016/j.conengprac.2006.04.002).
    20. 20)
      • 20. Rajamani, R., Piyabongkarn, N., Lew, J., Yi, K., Phanomchoeng, G.: ‘Tire-road friction-coefficient estimation’, IEEE Control Syst. Mag., 2010, 30, (4), pp. 5469 (doi: 10.1109/MCS.2010.937006).
    21. 21)
      • 21. Krstić, M., Kanellakopoulos, I., Kokotović, P.: ‘Nonlinear and adaptive control design’ (Wiley-Interscience, New York, 1995).
    22. 22)
      • 14. Sontag, E.D.: ‘Input to state stability: basic concepts and results’ (Nonlinear and Optimal Control Theory Lectures Notes in Mathematics) (Springer-Verlag, Berlin, 2008).
    23. 23)
      • 1. Ding, N.G., Yu, G.Z., Wang, W.D.: ‘Estimation of brake pressure and tyre–road friction during ABS activation’, Int. J. Veh. Des., 2012, 58, (1), pp. 3345 (doi: 10.1504/IJVD.2012.045921).
    24. 24)
      • 11. Imsland, L., Grip, L.H., Johansen, T., Fossen, T.I., Kalkkuhl, J.C., Suissa, A.: ‘Nonlinear observer for vehicle velocity with friction and road bank angle adaptation – validation and comparison with an extended Kalman filter’. Proc. SAE 2007 World Congress. Detroit, Michigan, USA2007, paper no. 2007–01–0808.
    25. 25)
      • 25. Imsland, L., Johansen, T.A., Fossen, T.I., Kalkkuhl, J.C., Suissa, A.: ‘Vehicle velocity estimation using modular nonlinear observers’. Proc. 44th IEEE Conf. Decision and Control, and the European Control Conference 2005, 2005, pp. 67286733.
    26. 26)
      • 17. Gao, B.Z., Chen, H., Zhao, H.Y., Sanada, K.: ‘A reduced-order nonlinear clutch pressure observer for automatic transmission’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 446453 (doi: 10.1109/TCST.2009.2024758).
    27. 27)
      • 3. Cho, W., Choi, J., Kim, C., Choi, S., Yi, K.: ‘Unified chassis control for the improvement of agility, erability, and lateral stability’, IEEE Trans. Veh. Technol., 2012, 61, (3), pp. 10081020 (doi: 10.1109/TVT.2012.2183152).

Related content

This is a required field
Please enter a valid email address