http://iet.metastore.ingenta.com
1887

Coordinated attitude motion control of multiple rigid bodies on manifold SO(3)

Coordinated attitude motion control of multiple rigid bodies on manifold SO(3)

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As a special case of consensus on non-linear spaces, in this study coordinated attitude motion control for a group of rigid bodies is investigated for second-order systems on Lie group SO(3). By introducing an auxiliary variable for each rigid body, the distributed controllers are designed so that the left-invariant coordination is asymptotically achieved and total coordination is at least locally asymptotically achieved. Simulation results for a multi-agent system consist of four rigid bodies show the effectiveness of the proposed design.

References

    1. 1)
      • 1. Reynolds, C.W.: ‘Flocks, herds, and schools: a distributed behavioral model’, Comput. Graph., 1987, 21, (4), pp. 2534 (doi: 10.1145/37402.37406).
    2. 2)
      • 2. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Hochet, O.: ‘Novel type of phase transition in a system of self-driven particles’, Phys. Rev. Lett., 1995, 75, (6), pp. 12261229 (doi: 10.1103/PhysRevLett.75.1226).
    3. 3)
      • 3. VanDyke, M.C., Hall, C.D.: ‘Decentralized coordinated attitude control within a formation of spacecraft’, J. Guid. Control Dyn., 2006, 29, (5), pp. 11011109 (doi: 10.2514/1.17857).
    4. 4)
      • 4. Qu, Z.: ‘Cooperative control of dynamical systems: applications to autonomous vehicles’ (Springer, 2009).
    5. 5)
      • 5. Chen, Y., Wang, Z.: ‘Formation control: a review and a new consideration’. Proc. Int. Conf. IEEE/RSJ Intelligent Robots and Systems, Alberta, Canada, August 2005, pp. 31813186.
    6. 6)
      • 6. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533 (doi: 10.1109/TAC.2004.834113).
    7. 7)
      • 7. Cao, M., Morse, A.S., Anderson, B.D.O.: ‘Reaching a consensus in a dynamically changing environment: a graphical approach’, SIAM J. Control Optim., 2008, 47, (2), pp. 575600 (doi: 10.1137/060657005).
    8. 8)
      • 8. Zheng, Y., Zhu, Y., Wang, L.: ‘Consensus of heterogeneous multi-agent systems’, IET Control Theory Appl., 2011, 5, (16), pp. 18811888 (doi: 10.1049/iet-cta.2011.0033).
    9. 9)
      • 9. Moreau, L.: ‘Stability of multiagent systems with time-dependent communication links’, IEEE Trans. Autom. Control, 2005, 50, (2), pp. 169182 (doi: 10.1109/TAC.2004.841888).
    10. 10)
      • 10. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661 (doi: 10.1109/TAC.2005.846556).
    11. 11)
      • 11. Cucker, F., Smale, S.: ‘Emergent behavior in flocks’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 852862 (doi: 10.1109/TAC.2007.895842).
    12. 12)
      • 12. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420 (doi: 10.1109/TAC.2005.864190).
    13. 13)
      • 13. Wen, G., Duan, Z., Su, H., Chen, G., Yu, W.: ‘A connectivity-preserving flocking algorithm for multi-agent dynamical systems with bounded potential function’, IET Control Theory Appl., 2012, 6, (6), pp. 813821 (doi: 10.1049/iet-cta.2011.0532).
    14. 14)
      • 14. Luo, X., Liu, D., Guan, X., Li, S.: ‘Flocking in target pursuit for multi-agent systems with partial informed agents’, IET Control Theory Appl., 2012, 6, (4), pp. 560569 (doi: 10.1049/iet-cta.2011.0135).
    15. 15)
      • 15. Su, H., Wang, X., Lin, Z.: ‘Flocking of multi-agents with a virtual leader’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 293307 (doi: 10.1109/TAC.2008.2010897).
    16. 16)
      • 16. Zhang, H., Zhai, C., Chen, Z.: ‘A general alignment repulsion algorithm for flocking of multi-agent systems’, IEEE Trans. Autom. Control, 2011, 56, (2), pp. 430435 (doi: 10.1109/TAC.2010.2089652).
    17. 17)
      • 17. Wen, G., Li, Z., Duan, Z., Chen, G.: ‘Distributed consensus control for linear multi-agent systems with discontinuous observations’, Int. J. Control, 2013, 86, (1), pp. 95106 (doi: 10.1080/00207179.2012.719637).
    18. 18)
      • 18. Scardovi, L., Sarlette, A., Sepulchre, R.: ‘Synchronization and balancing on the N-torus’, Syst. Control Lett., 2007, 56, (5), pp. 335341 (doi: 10.1016/j.sysconle.2006.10.020).
    19. 19)
      • 19. Sarlette, A., Sepulchre, R., Leonard, N.: ‘Autonomous rigid body attitude synchronization’, Automatica, 2009, 45, (2), pp. 572577 (doi: 10.1016/j.automatica.2008.09.020).
    20. 20)
      • 20. Bai, H., Arcak, M., Wen, J.T.: ‘Rigid body attitude coordination without inertial frame information’, Automatica, 2008, 44, (12), pp. 31703175 (doi: 10.1016/j.automatica.2008.05.018).
    21. 21)
      • 21. Hatanaka, T., Igarashi, Y., Fujita, M., Spong, M.W.: ‘Passivity-based pose synchronization in three dimensions’, IEEE Trans. Autom. Control, 2012, 57, (2), pp. 360375 (doi: 10.1109/TAC.2011.2166668).
    22. 22)
      • 22. Sarlette, A., Bonnabel, S., Sepulchre, R.: ‘Coordinated motion design on Lie groups’, IEEE Trans. Autom. Control, 2010, 55, (5), pp. 10471058 (doi: 10.1109/TAC.2010.2042003).
    23. 23)
      • 23. Dong, R., Geng, Z.: ‘Consensus based formation control laws for systems on Lie groups’, Syst. Control Lett., 2013, 62, (2), pp. 104111 (doi: 10.1016/j.sysconle.2012.11.005).
    24. 24)
      • 24. Sepulchre, R.: ‘Consensus on nonlinear spaces’, Annu. Rev. Control, 2011, 35, (1), pp. 5664 (doi: 10.1016/j.arcontrol.2011.03.003).
    25. 25)
      • 25. Lawton, J.R., Beard, R.W.: ‘Synchronized multiple spacecraft rotations’, Automatica, 2002, 38, (8), pp. 13591364 (doi: 10.1016/S0005-1098(02)00025-0).
    26. 26)
      • 26. Chaturvedi, N.E., Sanyal, A.K., McClamroch, N.H.: ‘Rigid-body attitude control: Using rotation matrices for continuous, singularity-free control laws’, IEEE Control Syst. Mag., 2011, 31, (3), pp. 3051 (doi: 10.1109/MCS.2011.940459).
    27. 27)
      • 27. Brockett, R.W.: ‘Differential geometry and the design of gradient algorithms’. Proc. Symp. Pure Mathematics, 1993, vol. 54, no. 1, pp. 6992 (doi: 10.1090/pspum/054.1/1216576).
    28. 28)
      • 28. Sarlette, A.: ‘Geometry and symmetries in coordination control’. PhD thesis, University of Liege, Liege, Belgium, 2009.
    29. 29)
      • 29. Mischaikow, K., Smith, H., Thieme, H.R.: ‘Asymptotically autonomous semi-flows, chain recurrence and Lyapunov functions’, Trans. Am. Math. Soc., 1995, 347, (5), pp. 16691685 (doi: 10.1090/S0002-9947-1995-1290727-7).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0236
Loading

Related content

content/journals/10.1049/iet-cta.2013.0236
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address