http://iet.metastore.ingenta.com
1887

LMI-based H control for linear singular discrete systems: a novel method

LMI-based H control for linear singular discrete systems: a novel method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the problem of state feedback H control for linear singular discrete systems. First, a novel admissibility condition and then a new bounded real lemma are proposed for linear singular discrete systems. Then, the existence condition and explicit expression of a desirable state feedback H controller are obtained based on the above results. It should be pointed out that all the conditions in this study are necessary and sufficient and in the form of strict linear matrix inequalities that can be solved easily. Finally, some numerical examples are provided to illustrate the effectiveness of the theoretical results in this study.

References

    1. 1)
      • 1. Dai, L.: ‘Singular control systems. Lecture notes in control and information sciences’ (Springer-Verlag, Berlin, 1989).
    2. 2)
      • 2. Duan, G.: ‘Analysis and design of descriptor linear systems’ (Springer, New York, 2010).
    3. 3)
      • 3. Liu, P., Zhang, Q., Yang, Y., Yang, L.: ‘Passivity and optimal control of descriptor biological complex systems’, IEEE Trans. Autom. Control, 2008, 53, pp. 122125 (doi: 10.1109/TAC.2007.911341).
    4. 4)
      • 4. Stevens, B.L., Lewis, F.L.: ‘Aircraft modeling, dynamics and control’ (Wiley, New York, 1991).
    5. 5)
      • 5. Xu, S., Yang, C.: ‘Stabilization of discrete-time singular systems: a matrix inequalities approach’, Automatica, 1999, 35, pp. 16131617 (doi: 10.1016/S0005-1098(99)00061-8).
    6. 6)
      • 6. Xia, Y., Boukas, E., Shi, P., Zhang, J.: ‘Stability and stabilization of continuous-time singular hybrid systems’, Automatica, 2009, 45, pp. 15041509 (doi: 10.1016/j.automatica.2009.02.008).
    7. 7)
      • 7. Mao, W.-J., Chu, J.: ‘Regularisation and stabilisation of linear discrete-time descriptor systems’, IET Control Theory Appl., 2010, 4, (10), pp. 22052211 (doi: 10.1049/iet-cta.2010.0037).
    8. 8)
      • 8. Xu, S., Lam, J.: ‘Robust stability and stabilization of discrete singular systems: an equivalent characterization’, IEEE Trans. Autom. Control, 2004, 49, (4), pp. 568574 (doi: 10.1109/TAC.2003.822854).
    9. 9)
      • 9. Wu, Z., Zhou, W.: ‘Delay-dependent robust stabilization for uncertain singular systems with discrete and distributed delays’, J. Control Theory Appl., 2008, 6, (2), pp. 171176 (doi: 10.1007/s11768-008-6166-3).
    10. 10)
      • 10. Mao, W.-J.: ‘Robust stability and stabilisation of discrete-time descriptor systems with uncertainties in the difference matrix’, IET Control Theory Appl., 2012, 6, (17), pp. 26762685 (doi: 10.1049/iet-cta.2011.0377).
    11. 11)
      • 11. Hsiung, K., Lee, L.: ‘Lyapunov inequality and bounded real lemma for discrete-time descriptor systems’, IEE Proc. Control Theory Appl., 1999, 146, (4), pp. 327331 (doi: 10.1049/ip-cta:19990451).
    12. 12)
      • 12. Xu, S., Yang, C.: ‘H state feedback control for discrete singular systems’, IEEE Trans. Autom. Control, 2000, 45, (7), pp. 14051409 (doi: 10.1109/9.867074).
    13. 13)
      • 13. Ji, X., Su, H., Chu, J.: ‘Robust state feedback H control for uncertain linear discrete singular systems’, IET Control Theory Appl., 2007, 1, pp. 195200 (doi: 10.1049/iet-cta:20050482).
    14. 14)
      • 14. Zhang, G., Xia, Y., Shi, P.: ‘New bounded real lemma for discrete-time singular systems’, Automatica, 2008, 44, pp. 886890 (doi: 10.1016/j.automatica.2007.07.017).
    15. 15)
      • 15. Chadli, M., Darouach, M.: ‘Novel bounded real lemma for discrete-time descriptor systems: application to H control design’, Automatica, 2012, 48, (2), pp. 449453 (doi: 10.1016/j.automatica.2011.10.003).
    16. 16)
      • 16. Lee, C.-M., Fong, I.K.: ‘H optimal singular and normal filter design for uncertain singular systems’, IET Control Theory Appl., 2007, 1, (1), pp. 119126 (doi: 10.1049/iet-cta:20060042).
    17. 17)
      • 17. Wu, Z., Park, J., Su, H., Song, B.: ‘Reliable H filtering for discrete-time singular systems with randomly occurring delays and sensor failures’, IET Control Theory Appl., 2012, 6, (14), pp. 23082317 (doi: 10.1049/iet-cta.2012.0235).
    18. 18)
      • 18. Wu, Z., Park, J., Su, H., Song, B., Chu, J.: ‘Mixed H and passive filtering for singular systems with time-delays’, Signal Process., 2013, 93, (7), pp. 17051711 (doi: 10.1016/j.sigpro.2013.01.003).
    19. 19)
      • 19. Wu, Z., Park, J., Su, H., Chu, J.: ‘Delay-dependent passivity for singular Markovian jump systems with time delays’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (3), pp. 669681 (doi: 10.1016/j.cnsns.2012.08.017).
    20. 20)
      • 20. Fridman, E., Shaked, U.: ‘A descriptor system approach to H control of linear time-delay systems’, IEEE Trans. Autom. Control, 2002, 47, pp. 253270 (doi: 10.1109/9.983353).
    21. 21)
      • 21. Cao, Y.-Y., Lin, Z.: ‘A descriptor system approach to robust satbility analysis and controller synthesis’, IEEE Trans. Autom. Control, 2004, 49, pp. 20812084 (doi: 10.1109/TAC.2004.837749).
    22. 22)
      • 22. Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’ (Society for Industrial and Applied Mathematics (SIAM), 1994).
    23. 23)
      • 23. Huang, L.: ‘Linear algebra in system and control theory’ (Science Press, Beijing, 1984).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0197
Loading

Related content

content/journals/10.1049/iet-cta.2013.0197
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address