http://iet.metastore.ingenta.com
1887

Distributed mixed continuous-discrete receding horizon filter for multisensory uncertain active suspension systems with measurement delays

Distributed mixed continuous-discrete receding horizon filter for multisensory uncertain active suspension systems with measurement delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new robust filtering method in modelling an active multisensory suspension system with measurement delays and parameteric uncertainties in a state-space dynamical model. To achieve good performance of the system, a new distributed fusion receding horizon filtering frameworks are constructed to couple the continuous dynamics with the multisensory discrete measurements, and to coordinately deal with the parametric uncertainty and time-delays. The novel filtering algorithm is proposed based on the receding horizon strategy, standard mixed continuous-discrete Kalman filtering and discrete Kalman filtering for systems with time-delays in order to achieve high estimation accuracy and stability under parametric uncertainties. The key theoretical contributions of this study are the derivation of the error cross-covariance equations between the local receding horizon filters in order to compute the optimal matrix fusion weights. The high accuracy and efficiency of the new filter are demonstrated through its implementation and performance and then compared to the existing vehicle active suspension system.

References

    1. 1)
      • 1. Appleyard, M., Wellstead, P.E.: ‘Active suspension: some background’, IEE Proc. Control Theory Appl., 1995, 142, (2), pp. 123128 (doi: 10.1049/ip-cta:19951735).
    2. 2)
      • 2. Solmaz, S.: ‘Switched stable control design methodology applied to vehicle rollover prevention based on switched suspension settings’, IET Control Theory Appl., 2011, 5, (9), pp. 11041112 (doi: 10.1049/iet-cta.2010.0361).
    3. 3)
      • 3. Qiu, J., Ren, M., Zhao, Y., Suo, Y.: ‘Active fault-tolerant control for vehicle active suspension systems in finite-frequency domain’, IET Control Theory Appl., 2011, 5, (13), pp. 15441550 (doi: 10.1049/iet-cta.2010.0519).
    4. 4)
      • 4. Li, H., Gao, H., Liu, H.: ‘Robust quantised control for active suspension systems’, IET Control Theory Appl., 2011, 5, (17), pp. 19551969 (doi: 10.1049/iet-cta.2010.0681).
    5. 5)
      • 5. Ma, M.M., Chen, H.: ‘Disturbance attenuation control of active suspension with non-linear actuator dynamics’, IET Control Theory Appl., 2011, 5, (1), pp. 112122 (doi: 10.1049/iet-cta.2009.0457).
    6. 6)
      • 6. Selamat, H., Yusof, R., Goodall, R.M.: ‘Self-tuning control for active steering of a railway vehicle with solid-axle wheelsets’, IET Control Theory Appl., 2008, 2, (5), pp. 374383 (doi: 10.1049/iet-cta:20070111).
    7. 7)
      • 7. Lee, S., Jeon, M., Shin, V.: ‘Distributed estimation fusion with application to multisensory vehicle suspension system with time-delays’, IEEE Trans. Ind. Electron., 2012, 59, (11), pp. 44754482 (doi: 10.1109/TIE.2011.2182010).
    8. 8)
      • 8. Jazwinski, A.H.: ‘Stochastic processes and filtering theory’ (Academic, New York, 1970).
    9. 9)
      • 9. Hu, J., Wang, Z., Shen, B., Gao, H.: ‘Gain-constrained recursive filtering with stochastic nonlinearities and probabilistic sensor delays’, IEEE Trans. Signal Process., 2013, 61, (5), pp. 12301238 (doi: 10.1109/TSP.2012.2232660).
    10. 10)
      • 10. Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: ‘Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements’, Automatica, 2012, 48, (9), pp. 20072015 (doi: 10.1016/j.automatica.2012.03.027).
    11. 11)
      • 11. Bar-Sharlom, Y., Li, X.R.: ‘Multitarget-multisensor tracking: principles and techniques’ (YBS Publishing, New York, 1995).
    12. 12)
      • 12. Zhu, Y.M.: ‘Multisensor decision and estimation fusion’ (Kluwer, Boston, 2002).
    13. 13)
      • 13. Sun, S.: ‘Multi-sensor optimal information fusion Kalman filter with applications’, Aerosp. Sci. Technol., 2004, 8, (11), pp. 5762 (doi: 10.1016/j.ast.2003.08.003).
    14. 14)
      • 14. Sun, S., Deng, Z.: ‘Multi-sensor optimal information fusion Kalman filter’, Automatica, 2004, 40, (6), pp. 10171023 (doi: 10.1016/j.automatica.2004.01.014).
    15. 15)
      • 15. Hashemipour, H.R., Roy, S., Laub, A.J.: ‘Decentralized structures for parallel Kalman filtering’, IEEE Trans. Autom. Control, 1988, 33, (1), pp. 8894 (doi: 10.1109/9.364).
    16. 16)
      • 16. Berg, T.M., Durrant-Whyte, H.F.: ‘General decentralized Kalman filters’. Proc. American Control Conf., Baltimore, Md, USA, July 1994, pp. 22732274.
    17. 17)
      • 17. Zhu, Y., You, Z., Zhao, J., et al: ‘The optimalty for the distributed Kalman filtering fusion with feedback’, Automatica, 2001, 37, (9), pp. 14891493 (doi: 10.1016/S0005-1098(01)00074-7).
    18. 18)
      • 18. Shen, B., Wang, Z., Hung, Y.S., Ghesi, G.: ‘Distributed H filtering for polynomial nonlinear stochastic systems in sensor network’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 19711979 (doi: 10.1109/TIE.2010.2053339).
    19. 19)
      • 19. Li, X.R., Zhu, Y.M., Wang, J., et al: ‘Optimal linear estimation fusion – part I: unified fusion rules’, IEEE Trans. Inf. Theory, 2003, 49, (9), pp. 21922208 (doi: 10.1109/TIT.2003.815774).
    20. 20)
      • 20. Zhou, J., Zhu, Y., You, Z., et al: ‘An efficient algorithm for optimal linear estimation fusion in distributed multisensor systems’, IEEE Trans. Syst. Man Cybern., 2006, 36, (5), pp. 10001009 (doi: 10.1109/TSMCA.2006.878986).
    21. 21)
      • 21. Shin, V., Lee, Y., Choi, T.: ‘Generalized Millman's formula and its applications for estimation problems’, Signal Process., 2006, 86, (2), pp. 257266 (doi: 10.1016/j.sigpro.2005.05.015).
    22. 22)
      • 22. Kwon, W.H., Han, S.: ‘Receding horizon control: model predictive control for state models’ (Springer, London, UK, 2005).
    23. 23)
      • 23. Anderson, B.D.O., Moore, J.B.: ‘Optimal filtering’ (Prentice-Hall, 1979).
    24. 24)
      • 24. Watanabe, W.: ‘Adaptive estimation and control’ (Prentice-Hall, New York, 1991).
    25. 25)
      • 25. Schweppe, F.C.: ‘Uncertain dynamic systems’ (Prentice-Hall, Upper Saddle River, NJ, 1973).
    26. 26)
      • 26. Alessandri, A., Baglietto, M., Battistelli, G.: ‘Receding-horizon estimation for discrete-time linear systems’, IEEE Trans. Autom. Control, 2003, 48, (3), pp. 473478 (doi: 10.1109/TAC.2003.809155).
    27. 27)
      • 27. Alessandri, A., Baglietto, M., Battistelli, G.: ‘Receding horizon estimation for switching discrete-time linear systems’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 17361748 (doi: 10.1109/TAC.2005.858684).
    28. 28)
      • 28. Kwon, W.H., Lee, K.S., Kwon, O.K.: ‘Optimal FIR filters for time-varying state-space models’, IEEE Trans. Aerosp. Electron. Syst., 1990, 26, (6), pp. 10111021 (doi: 10.1109/7.62253).
    29. 29)
      • 29. Kwon, W.H., Kim, P.S., Park, P.: ‘A receding horizon Kalman FIR filter for discrete time-invariant systems’, IEEE Trans. Autom. Control, 1999, 44, (9), pp. 17871791 (doi: 10.1109/9.788554).
    30. 30)
      • 30. Kim, D.Y., Shin, V.: ‘An optimal receding horizon FIR filter for continuous-time linear systems’. Proc. Int. Conf. ‘SICE-ICCAS’, Busan, Korea, October 2006, pp. 263265.
    31. 31)
      • 31. Kim, D.Y., Shin, V.: ‘Optimal receding horizon filter for continuous-time nonlinear stochastic systems’. Proc. Sixth WSEAS Inter. Conf. on Signal Processing, Dallas, Texas, USA, March 2007, pp. 112116.
    32. 32)
      • 32. Simon, D.: ‘Optimal state estimation: Kalman, H-infinity, and nonlinear approaches’ (John Wiley & Sons, 2006).
    33. 33)
      • 33. Priemer, R., Vacroux, A.G.: ‘Estimation in linear discrete systems with multiple time delays’, IEEE Trans. Autom. Control, 1969, 14, (4), pp. 384387 (doi: 10.1109/TAC.1969.1099195).
    34. 34)
      • 34. Mishra, J., Rajamani, V.S.: ‘Least-squares state estimation in time-delay systems with colored observation noise: an innovation approach’, IEEE Trans. Autom. Control, 1975, 20, (1), pp. 140142 (doi: 10.1109/TAC.1975.1100858).
    35. 35)
      • 35. Song, I.Y., Kim, D.Y., Kim, Y.H., Lee, S.J., Shin, V.: ‘Distributed Fusion receding horizon filtering in linear stochastic systems’, EURASIP J. Adv. Signal Process., 2009, doi:10.1155/2009/929535.
    36. 36)
      • 36. Song, I.Y., Shin, V.: ‘Receding horizon filtering for multisensor linear dynamics systems’, Int. J. Innovative Comput. Inf. Control, 2011, 7, (2), pp. 609624.
    37. 37)
      • 37. Song, I.Y., Shin, V.: ‘Distributed receding horizon filtering for mixed continuous-discrete multisensor linear stochastic systems’, Multisensor Linear Stochastic Syst. Meas. Sci. Technol., 2010, 21, (12), pp. 19.
    38. 38)
      • 38. Song, I.Y., Kim, D.Y., Shin, V., Jeon, M.G.: ‘Receding horizon filtering for discrete time linear systems with state and observation delays’, IET Radar Sonar Navig., 2012, 6, (4), pp. 263271 (doi: 10.1049/iet-rsn.2011.0094).
    39. 39)
      • 39. Song, I.Y., Jeon, M.G., Shin, V.: ‘Efficient multisensor fusion with sliding window Kalman filtering for discrete-time uncertain systems with delays’, IET Signal Process., 2012, 6, (5), pp. 446455 (doi: 10.1049/iet-spr.2011.0278).
    40. 40)
      • 40. Shen, B., Wang, Z., Liu, X.: ‘A stochastic sampled-data approach to distributed H-infinity filtering in sensor networks’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2011, 58, (9), pp. 22372246 (doi: 10.1109/TCSI.2011.2112594).
    41. 41)
      • 41. Shen, B., Wang, Z.D., Hung, Y.S.: ‘Distributed H-infinity-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case’, Automatica, 2010, 46, (10), pp. 16821688 (doi: 10.1016/j.automatica.2010.06.025).
    42. 42)
      • 42. Lewis, F.L.: ‘Optimal estimation’ (John Wiley & Sons, New York, 1986).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0179
Loading

Related content

content/journals/10.1049/iet-cta.2013.0179
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address