http://iet.metastore.ingenta.com
1887

Stability analysis of complex-valued impulsive system

Stability analysis of complex-valued impulsive system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Since quantum system, which is one of the foci of ongoing research, is the classical example of complex-valued systems, in this study, the stability of complex-valued impulsive system is addressed. Taking advantage of the Lyapunov function in the complex fields, the stability criteria of complex-valued impulsive system are established, which not only generalises the stability criteria on real-valued impulsive system, but also greatly reduces the complexity of analysis and computation. Moreover, as an application, a linear impulsive feedback controller for the complex-valued Lü system is designed.

References

    1. 1)
      • 1. Liu, Y., Wang, Z., Liu, X.: ‘Stability analysis for a class of neutral-type neural networks with Markovian jumping parameters and mode-dependent mixed delays’, Neurocomputing, 2012, 94, (1), pp. 4653 (doi: 10.1016/j.neucom.2012.04.003).
    2. 2)
      • 2. Zhu, Q., Hu, G.: ‘Stability and absolute stability of a general 2-D non-linear FM second model’, IET Control Theory Appl., 2011, 5, (1), pp. 239246 (doi: 10.1049/iet-cta.2009.0624).
    3. 3)
      • 3. Li, C., Shi, J., Sun, J.: ‘Stability of impulsive stochastic differential delay systems and its application to impulsive stochastic neural networks’, Nonlinear Anal. Theory Methods Appl., 2011, 74, (10), pp. 30993111 (doi: 10.1016/j.na.2011.01.026).
    4. 4)
      • 4. Li, C., Sun, J., Sun, R.: ‘Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects’, J Franklin I, 2010, 347, (7), pp. 11861198 (doi: 10.1016/j.jfranklin.2010.04.017).
    5. 5)
      • 5. Pan, S., Sun, J., Zhao, S.: ‘Stabilization of discrete-time Markovian jump linear systems via time-delayed and impulsive controllers’, Automatica, 2008, 44, (11), pp. 29542958 (doi: 10.1016/j.automatica.2008.04.004).
    6. 6)
      • 6. Sun, F.L., Guan, Z.H., Zhang, X.H., Chen, J.C.: ‘Exponential-weighted input-to-state stability of hybrid impulsive switched systems’, IET Control Theory Appl., 2012, 6, (3), pp. 430436 (doi: 10.1049/iet-cta.2010.0466).
    7. 7)
      • 7. Fang, T., Sun, J.: ‘Existence and uniqueness of solutions to complex-valued nonlinear impulsive differential systems’, Adv. Differ. Equ., 2012, 2012, (1), pp. 19 (doi: 10.1186/1687-1847-2012-115).
    8. 8)
      • 8. Wan, X., Sun, J.: ‘Adaptive-impulsive synchronization of chaotic systems’, Math. Comput. Simul., 2011, 81, (8), pp. 16091617 (doi: 10.1016/j.matcom.2010.11.012).
    9. 9)
      • 9. Shen, L., Sun, J.: ‘Approximate controllability of stochastic impulsive systems with control-dependent coefficients’, IET Control Theory Appl., 2011, 5, (16), pp. 18891894 (doi: 10.1049/iet-cta.2010.0422).
    10. 10)
      • 10. Xu, J., Sun, J.: ‘Finite-time stability of linear time-varying singular impulsive systems’, IET Control Theory Appl., 2010, 4, (10), pp. 22392244 (doi: 10.1049/iet-cta.2010.0242).
    11. 11)
      • 11. Chen, L., Sun, J.: ‘Nonlinear boundary value problem of first order impulsive functional differential equations’, J. Math. Anal. Appl., 2006, 318, (2), pp. 726741 (doi: 10.1016/j.jmaa.2005.08.012).
    12. 12)
      • 12. Liu, X., Liu, Y., Teo, K.: ‘Stability analysis of impulsive control systems’, Math. Comput. Model., 2003, 37, (12), pp. 13571370 (doi: 10.1016/S0895-7177(03)90046-X).
    13. 13)
      • 13. Sun, J., Zhang, Y., Wu, Q.: ‘Less conservative conditions for asymptotic stability of impulsive control systems’, IEEE Trans. Autom. Control, 2003, 48, (5), pp. 829831 (doi: 10.1109/TAC.2003.811262).
    14. 14)
      • 14. Maalouf, A., Petersen, I.: ‘Sampled-data LQG control for a class of linear quantum systems’, Syst. Control Lett., 2012, 61, (2), pp. 369374 (doi: 10.1016/j.sysconle.2011.12.005).
    15. 15)
      • 15. Chou, Y.H., Chen, C.Y., Chiu, C.H., Chao, H.C.: ‘Classical and quantum-inspired electromagnetism-like mechanism and its applications’, IET Control Theory Appl., 2012, 6, (10), pp. 14241433 (doi: 10.1049/iet-cta.2011.0382).
    16. 16)
      • 16. Dong, D., Petersen, I.: ‘Quantum control theory and applications: a survey’, IET Control Theory Appl., 2010, 4, (12), pp. 26512671 (doi: 10.1049/iet-cta.2009.0508).
    17. 17)
      • 17. Yang, C.: ‘Stability and quantization of complex-valued nonlinear quantum systems’, Chaos Solitons Fractals, 2009, 42, (2), pp. 711723 (doi: 10.1016/j.chaos.2009.01.044).
    18. 18)
      • 18. Zhao, H., Zeng, X., He, Z., Jin, W., Li, T.: ‘Complex-valued pipelined decision feedback recurrent neural network for non-linear channel equalisation’, Commun. IET, 2012, 6, (9), pp. 10821096 (doi: 10.1049/iet-com.2011.0415).
    19. 19)
      • 19. Ceylan, R., Ceylan, M., Özbay, Y., Kara, S.: ‘Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease’, Expert Syst. Appl., 2011, 38, (8), pp. 97449751 (doi: 10.1016/j.eswa.2011.02.025).
    20. 20)
      • 20. Hirose, A.: ‘Complex-valued neural networks: theories and applications’ (World Scientific Pub Co Inc, 2003).
    21. 21)
      • 21. Doering, C., Gibbon, J., Holm, D., Nicolaenko, B.: ‘Low-dimensional behaviour in the complex Ginzburg-Landau equation’, Nonlinearity, 1988, 1, pp. 279309 (doi: 10.1088/0951-7715/1/2/001).
    22. 22)
      • 22. Orszag, S.: ‘Accurate solution of the Orr-Sommerfeld stability equation’, J. Fluid Mech., 1971, 50, (4), pp. 689703 (doi: 10.1017/S0022112071002842).
    23. 23)
      • 23. Ráb, M.: ‘Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients’, J. Differ. Equ., 1977, 25, (1), pp. 108114 (doi: 10.1016/0022-0396(77)90183-8).
    24. 24)
      • 24. Rauh, A., Hannibal, L., Abraham, N.: ‘Global stability properties of the complex Lorenz model’, Physica D, Nonlinear Phenom., 1996, 99, (1), pp. 4558 (doi: 10.1016/S0167-2789(96)00129-7).
    25. 25)
      • 25. Mahmoud, G., Aly, S., Farghaly, A.: ‘On chaos synchronization of a complex two coupled dynamos system’, Chaos Solitons Fractals, 2007, 33, (1), pp. 178187 (doi: 10.1016/j.chaos.2006.01.036).
    26. 26)
      • 26. Wei, J., Zhang, C.: ‘Stability analysis in a first-order complex differential equations with delay’, Nonlinear Anal., 2004, 59, (5), pp. 657671.
    27. 27)
      • 27. Zhao, S., Sun, J.: ‘Controllability and observability for impulsive systems in complex fields’, Nonlinear Anal., Real World Appl., 2010, 11, (3), pp. 15131521 (doi: 10.1016/j.nonrwa.2009.03.009).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0116
Loading

Related content

content/journals/10.1049/iet-cta.2013.0116
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address