http://iet.metastore.ingenta.com
1887

Explicit solutions to the matrix equation E X F − AX = C

Explicit solutions to the matrix equation E X F − AX = C

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The matrix equation E X F − AX = C is investigated in this study, and three approaches are provided to solve this equation. The first approach is to transform it into a real matrix equation with the help of real representation of complex matrices. In the second approach, the solution is given in terms of characteristic polynomial of a constructed matrix pair. In the third approach, the solution can be neatly expressed in terms of controllability matrices and observability matrices. By specialising the obtained solutions of E X F − AX = C, some new expressions of the generalised Sylvester matrix equations are also provided.

References

    1. 1)
      • 1. Tismenetsky, M.: ‘Factorizations of Hermitian block Hankel matrices’, Linear Algebr. Appl., 1992, 166, pp. 4563 (doi: 10.1016/0024-3795(92)90269-G).
    2. 2)
      • 2. Bartels, R.H., Stewart, G.W.: ‘A solution of the equation AX + XB = C’, Commun. ACM, 1972, 15, pp. 820826 (doi: 10.1145/361573.361582).
    3. 3)
      • 3. Kitagawa, G.: ‘An algorithm for solving the matrix equation X = FXFT + S, Int. J. Control, 1977, 25, pp. 745753 (doi: 10.1080/00207177708922266).
    4. 4)
      • 4. Kleinman, D.L., Rao, P.K.: ‘Extensions to the Bartels–Stewart algorithm for linear matrix equation’, IEEE Trans. Autom. Control, 1978, 23, (1), pp. 8587 (doi: 10.1109/TAC.1978.1101681).
    5. 5)
      • 5. Golub, G., Nash, S., Van Loan, C.: ‘A Hessenberg–Schur method for the problem AX + XB = C’, IEEE Trans. Autom. Control, 1979, 24, pp. 909913 (doi: 10.1109/TAC.1979.1102170).
    6. 6)
      • 6. Betser, A., Cohen, N., Zeheb, E.: ‘On solving the Lyapunov and Stein equations for a companion matrix’, System Control Lett., 1995, 25, pp. 211218 (doi: 10.1016/0167-6911(94)00072-4).
    7. 7)
      • 7. Brockett, R.W.: ‘Introduction to matrix analysis’ (John Wiley, New York, 1970).
    8. 8)
      • 8. Young, N.J.: ‘Formulae for the solution of Lyapunov matrix equation’, Int. J. Control, 1980, 31, pp. 159179 (doi: 10.1080/00207178008961035).
    9. 9)
      • 9. Fahmy, M.M., Hanafy, A.A.R.: ‘Note on the extremal properties of the discrete-time Lyapunov matrix equation’, Inf. Control, 1979, 40, pp. 285290 (doi: 10.1016/S0019-9958(79)90775-7).
    10. 10)
      • 10. Bhatia, R.: ‘A note on the Lyapunov equation’, Linear Algebr. Appl., 1997, 259, pp. 7176 (doi: 10.1016/S0024-3795(96)00242-X).
    11. 11)
      • 11. Bhatia, R., Elsner, L.: ‘Positive linear maps and the Lyapunov equation’, Operator Theory, Adv. Appl., 2001, 130, pp. 107120.
    12. 12)
      • 12. Lerer, L., Tismenetsky, M.: ‘Generalized Bezoutian and matrix equations’, Linear Algebr. Appl., 1988, 99, pp. 123160 (doi: 10.1016/0024-3795(88)90129-2).
    13. 13)
      • 13. Tismenetsky, M.: ‘Some properties of solutions of Yule–Walker type equations’, Linear Algebr. Appl., 1992, 173, pp. 117 (doi: 10.1016/0024-3795(92)90419-B).
    14. 14)
      • 14. Ma, E.C.: ‘A finite series solution of the matrix equation AX − XB = C’, SIAM J. Appl. Math., 1966, 14, pp. 490495 (doi: 10.1137/0114043).
    15. 15)
      • 15. Zhou, B., Duan, G.R.: ‘An explicit solution to the matrix equation AX − XF = BY’, Linear Algebr. Appl., 2005, 402, pp. 345366 (doi: 10.1016/j.laa.2005.01.018).
    16. 16)
      • 16. DeSouza, E., Bhattacharyya, S.: ‘Controllability and observability and the solution of AX − XB = C’, Linear Algebr. Appl.1981, 39, pp. 167188 (doi: 10.1016/0024-3795(81)90301-3).
    17. 17)
      • 17. Jones, J., Charleslew, J.R.: ‘Solutions of the Lyapunov matrix equation BX − XA = C .IEEE Trans. Autom. Control, 1982, 27, (2), pp. 464466 (doi: 10.1109/TAC.1982.1102902).
    18. 18)
      • 18. Hanzon, B.: ‘A Faddeev sequence method for solving Lyapunov and Sylvester equations’, Linear Algebr. Appl., 1996, pp. 401430 (doi: 10.1016/0024-3795(95)00683-4).
    19. 19)
      • 19. Jameson, A.: ‘Solution of the equation AX − XB = C by inversion of an M × M or N × N matrix’, SIAM J. Appl. Math.1968, 16, pp. 10201023 (doi: 10.1137/0116083).
    20. 20)
      • 20. Jiang, T., Wei, M.: ‘On solutions of the matrix equations X − AXB = C and XAX¯B=C, Linear Algebr. Appl., 2003, 367, pp. 225233 (doi: 10.1016/S0024-3795(02)00633-X).
    21. 21)
      • 21. Lancaster, P., Lerer, L., Tismenetsky, M.: ‘Factored forms for solutions of the equation AX − XB = C in companion matrices’, Linear Algebr. Appl., 1984, 62, pp. 1949 (doi: 10.1016/0024-3795(84)90086-7).
    22. 22)
      • 22. Datta, K.: ‘The matrix equatlon XA − BX = R and its applications’, Linear Algebr. Appl., 1988, 109, pp. 91105 (doi: 10.1016/0024-3795(88)90200-5).
    23. 23)
      • 23. Ramadan, M.A., El-Shazly, N.M., Selim, B.I.: ‘A Hessenberg method for the numerical solutions to types of block Sylvester matrix equations’, Math. Comput. Model., 2010, 52, pp. 17161727 (doi: 10.1016/j.mcm.2010.06.042).
    24. 24)
      • 24. Niu, Q., Wang, X., Lu, L.Z.: ‘A relaxed gradient based algorithm for solving Sylvester equations’, Asian J. Control, 2011, 13, (3), pp. 461464 (doi: 10.1002/asjc.328).
    25. 25)
      • 25. Wang, X., Dai, L., Liao, D.: ‘A modified gradient based algorithm for solving Sylvester equations’, Appl. Math. Comput., 2012, 218, pp. 56205628 (doi: 10.1016/j.amc.2011.11.055).
    26. 26)
      • 26. Benner, P., Li, R.C., Truhar, N.: ‘On the ADI method for Sylvester equations’, J. Comput. Appl. Math., 2009, 233, pp. 10351045 (doi: 10.1016/j.cam.2009.08.108).
    27. 27)
      • 27. Heyouni, M.: ‘Extended Arnoldi methods for large low-rank Sylvester matrix equationsAppl. Numer. Math., 2010, 60, pp. 11711182 (doi: 10.1016/j.apnum.2010.07.005).
    28. 28)
      • 28. Zhou, B., Lam, J., Duan, G.R.: ‘On Smith-type iterative algorithms for the Stein matrix equationAppl. Math. Lett., 2009, 22, pp. 10381044 (doi: 10.1016/j.aml.2009.01.012).
    29. 29)
      • 29. Bevis, J.H., Hall, F.J., Hartwig, R.E.: ‘The matrix equation AX¯XB=C and its special cases’, SIAM J. Matrix Anal. Appl., 1988, 9, (3), pp. 348359 (doi: 10.1137/0609029).
    30. 30)
      • 30. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, 1990).
    31. 31)
      • 31. Wu, A.G., Duan, G.R., Yu, H.H.: ‘On solutions of the matrix equations XF − AX = C and XFAX¯=C’, Appl. Math. Comput., 2006, 183, (2), pp. 932941 (doi: 10.1016/j.amc.2006.06.039).
    32. 32)
      • 32. Teran, F.D., Dopico, F.M., Guillery, N., Montealegre, D., Reyes, N.: ‘The solution of the equation AX + XB = 0’, Linear Algebr. Appl., 2013, 438, pp. 28172860 (doi: 10.1016/j.laa.2012.11.014).
    33. 33)
      • 33. Wu, A.G., Wang, H.Q., Duan, G.R.: ‘On matrix equations X − AXF = C and XAX¯F=C’, J. Comput. Appl. Math., 2009, 230, (2), pp. 690698 (doi: 10.1016/j.cam.2009.01.013).
    34. 34)
      • 34. Wu, A.G., Feng, G., Duan, G.R., Liu, W.: ‘Iterative solutions to the Kalman–Yakubovich-conjugate matrix equation’, Appl. Math. Comput., 2011, 217, (9), pp. 44274438 (doi: 10.1016/j.amc.2010.10.041).
    35. 35)
      • 35. Zhou, B., Lam, J., Duan, G.R.: ‘Toward solution to the matrix equation X = Af(X)B + C’, Linear Algebr. Appl., 2011, 435, pp. 13701398 (doi: 10.1016/j.laa.2011.03.003).
    36. 36)
      • 36. Lin, W., Dai, L.: ‘Solutions to the output regulation problem of linear singular systems’, Automatica, 32, (12), pp. 17131718 (doi: 10.1016/S0005-1098(96)80008-2).
    37. 37)
      • 37. Wu, A.G., Duan, G.R., Xue, Y.: ‘Kronecker maps and Sylvester-polynomial matrix equations’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 905910 (doi: 10.1109/TAC.2007.895906).
    38. 38)
      • 38. Mertzios, B.G.: ‘Leverrier's algorithm for singular systems’, IEEE Trans. Autom. Control, 1984, 29, (7), pp. 652653 (doi: 10.1109/TAC.1984.1103602).
    39. 39)
      • 39. Lewis, F.L.: ‘Further remarks on the Cayley–Hamilton theorem and Leverrier's method for the matrix pencil (sE − A)’, IEEE Trans. Autom. Control, 1986, 31, (9), pp. 869870 (doi: 10.1109/TAC.1986.1104420).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0075
Loading

Related content

content/journals/10.1049/iet-cta.2013.0075
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address