http://iet.metastore.ingenta.com
1887

Synchronisation of linear high-order multi-agent systems: an internal model approach

Synchronisation of linear high-order multi-agent systems: an internal model approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the synchronisation problem of identical linear high-order multi-agent systems. A new dynamical controller is constructed by the internal model approach, which does not depend on the controller state information of neighbouring agents, but only on the weighted sum of relative output errors and the local measured output. The proposed controller can work for some classes of agents having unstable modes and always work well for the agents having all its eigenvalues in the closed left-half complex plane. A simulation example illustrates the efficacy of the analytic results.

References

    1. 1)
      • 1. Ren, W., Atkins, E.: ‘Distributed multi-vehicle coordinated control via local information exchange’, Int. J. Robust Nonlinear Control, 2007, 17, (10–11), pp. 10021033 (doi: 10.1002/rnc.1147).
    2. 2)
      • 2. Yu, W., Chen, G., Cao, M.: ‘Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems’, Automatica, 2010, 46, (6), pp. 10891095 (doi: 10.1016/j.automatica.2010.03.006).
    3. 3)
      • 3. Yang, T., Roy, S., Wan, Y., Saberi, A.: ‘Constructing consensus controllers for networks with identical general linear agents’, Int. J. Robust Nonlinear Control, 2011, 21, (11), pp. 12371256 (doi: 10.1002/rnc.1641).
    4. 4)
      • 4. Meng, Z., Zhao, Z., Lin, Z.: ‘On global leader-following consensus of identical linear dynamic systems subject to actuator saturation’, Syst. Control Lett., 2013, 62, (2), pp. 132142 (doi: 10.1016/j.sysconle.2012.10.016).
    5. 5)
      • 5. Lunze, J.: ‘Synchronizable nodes in networked systems’, J. Phys. A: Math. Theor., 2011, 44, (4), p. 045103 (doi: 10.1088/1751-8113/44/4/045103).
    6. 6)
      • 6. Li, Z., Duan, Z., Chen, G., Huang, L.: ‘Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2010, 57, (1), pp. 213224 (doi: 10.1109/TCSI.2009.2023937).
    7. 7)
      • 7. Scardovi, L., Sepulchre, R.: ‘Synchronization in networks of identical linear systems’, Automatica, 2009, 45, (11), pp. 25572562 (doi: 10.1016/j.automatica.2009.07.006).
    8. 8)
      • 8. Seo, J., Shim, H., Back, J.: ‘Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach’, Automatica, 2009, 45, (11), pp. 26592664 (doi: 10.1016/j.automatica.2009.07.022).
    9. 9)
      • 9. Xiang, J., Wei, W., Li, Y.: ‘Synchronized output regulation of linear networked systems’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 13361341 (doi: 10.1109/TAC.2009.2015546).
    10. 10)
      • 10. Kim, H., Shim, H., Seo, J.: ‘Output consensus of heterogeneous uncertain linear multi-agent systems’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 200206 (doi: 10.1109/TAC.2010.2088710).
    11. 11)
      • 11. Wieland, P., Sepulchre, R., Allgöwer, F.: ‘An internal model principle is necessary and sufficient for linear output synchronization’, Automatica, 2011, 47, (5), pp. 10681074 (doi: 10.1016/j.automatica.2011.01.081).
    12. 12)
      • 12. Grip, H.F., Yang, T., Saberi, A., Stoorvogel, A.A.: ‘Output synchronization for heterogeneous networks of non-introspective agents’, Automatica, 2012, 48, (10), pp. 24442453 (doi: 10.1016/j.automatica.2012.06.081).
    13. 13)
      • 13. Huang, J.: ‘Nonlinear output regulation: theory and applications’ (SIAM, Philadelphia, USA, 2004).
    14. 14)
      • 14. Xiang, J., Wei, W.: ‘An internal model approach for synchronization of linear multi-agent systems using relative outputs’. 31st Chinese Control Conf., Hefei, July 2012, pp. 11581163.
    15. 15)
      • 15. Lin, Z., Francis, B., Maggiore, M.: ‘Necessary and sufficient graphical conditions for formation control of unicycles’, IEEE Trans. Autom. Control, 2005, 50, (1), pp. 121127 (doi: 10.1109/TAC.2004.841121).
    16. 16)
      • 16. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: ‘Synchronization in complex networks’, Phys. Rep., 2008, 469, (3), pp. 93153 (doi: 10.1016/j.physrep.2008.09.002).
    17. 17)
      • 17. Ilchmann, A.: ‘Non-Identifier-Based High-Gain Adaptive Control’ (Springer-Verlag, London, 1993).
    18. 18)
      • 18. Davison, E.J., Wang, S.H.: ‘Properties and calculation of transmission zeros of linear multivariable systems’, Automatica, 1974, 10, (6), pp. 643658 (doi: 10.1016/0005-1098(74)90085-5).
    19. 19)
      • 19. Kim, H., Shim, H., Back, J., Seo, J.H.: ‘Consensus of output-coupled linear multi-agent systems under fast switching network: averaging approach’, Automatica, 2013, 49, (1), pp. 267272 (doi: 10.1016/j.automatica.2012.09.025).
    20. 20)
      • 20. Willems, J.: ‘Least squares stationary optimal control and the algebraic Riccati equation’, IEEE Trans. Autom. Control, 1971, 16, (6), pp. 621634 (doi: 10.1109/TAC.1971.1099831).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0074
Loading

Related content

content/journals/10.1049/iet-cta.2013.0074
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address