Direct and exact methods for the synthesis of discrete-time proportional–integral–derivative controllers

Direct and exact methods for the synthesis of discrete-time proportional–integral–derivative controllers

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new set of formulae for the design of discrete proportional–integral–derivative (PID) controllers under requirements on steady-state performance and robustness specifications, such as phase and the gain margins, as well as the gain crossover frequency. The proposed technique has the advantage of avoiding trial-and-error procedures or approximations connected to an a posteriori discretisation. This method can also be implemented as a graphical design procedure in the Nyquist plane. The plot of suitable regions can be used to check a priori if the problem leads to feasible values of the PID parameters.


    1. 1)
      • 1. Lennartson, B., Kristiansson, B.: ‘Evaluation and tuning of robust PID controllers’, IET Control Theory Appl., 2009, 3, (3), pp. 294302 (doi: 10.1049/iet-cta:20060450).
    2. 2)
      • 2. Meza, J.L., Santibanez, V., Soto, R., Llama, M.A.: ‘Fuzzy self-tuning PID semiglobal regulator for robot manipulators’, IEEE Trans. Ind. Electron., 2012, IE-59, (6), pp. 27092717 (doi: 10.1109/TIE.2011.2168789).
    3. 3)
      • 3. Zhang, H., Shi, Y., Saadat Mehr, A.: ‘Robust static output feedback control and remote PID design for networked motor systems’, IEEE Trans. Ind. Electron., 2011, IE-(58)-12, pp. 53965405 (doi: 10.1109/TIE.2011.2107720).
    4. 4)
      • 4. Zhang, H., Shi, Y., Saadat Mehr, A.: ‘Robust H PID control for multivariable networked control systems with disturbance/noise attenuation’, Int. J. Robust Nonlinear Control, 2012, 22, (2), pp. 183204 (doi: 10.1002/rnc.1688).
    5. 5)
      • 5. Aström, K.J., Hagglund, T.: ‘PID controllers: theory, design and tuning’ (Instrument Society of America, Research Triangle Park, NC, 1995, 2nd edn.).
    6. 6)
      • 6. Aström, K.J., Hagglund, T.: ‘Advanced PID control’ (Instrument Society of America, Research Triangle Park, NC, 2006).
    7. 7)
      • 7. Datta, A., Ho, M.-T., Bhattacharyya, S.P.: ‘Structure and synthesis of PID controllers’ (Springer, 2000).
    8. 8)
      • 8. Dorf, R.C., Bishop, R.H.: ‘Modern control systems’ (Prentice-Hall, Upper Saddle River, NJ, 2008).
    9. 9)
      • 9. Nise, N.S.: ‘Control systems engineering’ (Wiley, Hoboken, NJ, 2008, 5th edn.).
    10. 10)
      • 10. Ogata, K.: ‘Modern control engineering’ (Prentice-Hall, Upper Saddle River, NJ, 2009, 4th edn.).
    11. 11)
      • 11. Ogata, K.: ‘Discrete-time control systems’ (Prentice-Hall, Upper Saddle River, NJ, 1995, 2nd edn.).
    12. 12)
      • 12. Visioli, A.: ‘Practical PID control’ Advances in industrial control’ (Springer-Verlag, 2006).
    13. 13)
      • 13. Ho, W.K., Hang, C.C., Cao, L.S.: ‘Tuning of PID controllers based on gain and phase margin specifications’, Automatica, 1995, 31, (3), pp. 497502 (doi: 10.1016/0005-1098(94)00130-B).
    14. 14)
      • 14. Keel, L.H., Bhattacharyya, S.P.: ‘Controller synthesis free of analytical models: three term controllers’, IEEE Trans. Autom. Control, 2008, AC-53, (6), pp. 13531369 (doi: 10.1109/TAC.2008.925810).
    15. 15)
      • 15. Kim, K., Kim, Y.C.: ‘The complete set of PID controllers with guaranteed gain and phase margins’. Proc. 44th IEEE Conf. Decision and Control, and the European Control Conf. 2005, Seville, Spain, 12–15 December, 2005, pp. 65336538.
    16. 16)
      • 16. Skogestad, S.: ‘Simple analytic rules for model reduction and PID controller tuning’, J. Process Control, 2003, 13, pp. 291309 (doi: 10.1016/S0959-1524(02)00062-8).
    17. 17)
      • 17. Yeung, K.S., Lee, K.H.: ‘A universal design chart for linear time-invariant continuous-time and discrete-time compensators’, IEEE Trans. Educ., 2000, E-43, (3), pp. 309315 (doi: 10.1109/13.865206).
    18. 18)
      • 18. Phillips, C.L., Nagle, H.T.: ‘Digital control systems’ (Prentice-Hall, 1995).
    19. 19)
      • 19. Capello, E., Sartori, D., Guglieri, G., Quagliotti, F.: ‘Robust assessment for the design of multi-loop proportional integrative derivative autopilot’, IET Control Theory Appl., 2012, 11, (6), pp. 16101619 (doi: 10.1049/iet-cta.2011.0275).
    20. 20)
      • 20. Farahani, M., Ganjefar, S., Alizadeh, M.: ‘PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control’, IET Control Theory Appl., 2012, 13, (6), pp. 19841992 (doi: 10.1049/iet-cta.2011.0405).
    21. 21)
      • 21. Ntogramatzidis, L., Ferrante, A.: ‘Exact tuning of PID controllers in control feedback design’, IET Control Theory Appl., 2011, 5, (4), pp. 565578 (doi: 10.1049/iet-cta.2010.0239).
    22. 22)
      • 22. Marro, G., Zanasi, R.: ‘New formulae and graphics for compensator design’. IEEE Int. Conf. Control Application, Trieste, Italy, 1–4 September, 1998.
    23. 23)
      • 23. Zanasi, R., Cuoghi, S., Ntogramatzidis, L.: ‘Analytical and graphical design of lead-lag compensators’, Int. J. Control, 2011, 84, (11), pp. 18301846 (doi: 10.1080/00207179.2011.626796).
    24. 24)
      • 24. Zanasi, R., Cuoghi, S.: ‘Analytical and graphical design of PID compensators on the Nyquist plane’. IEEE IFAC Conf. Advances in PID Control PID’12, Int. Federation of Automatic Control, Brescia, Italy, 28–30 March, 2012.
    25. 25)
      • 25. Zanasi, R., Cuoghi, S.: ‘Direct methods for the synthesis of PID compensators: analytical and graphical design’. IEEE IECON, Industrial Electronics Conf., Melbourne, Australia, 7–10 November, 2011.
    26. 26)
      • 26. Darbha, S., Bhattacharyya, S.P.: ‘Controller synthesis for sign-invariant impulse response’, IEEE Trans. Autom. Control, 2002, AC-47, (8), pp. 13461351 (doi: 10.1109/TAC.2002.800746).
    27. 27)
      • 27. De La Barra, B. L., El-Khoury, M., Fernandez, M.: ‘On undershoot in scalar discrete-time systems’, Automatica, 1996, 32, (2), pp. 255259 (doi: 10.1016/0005-1098(96)85556-7).
    28. 28)
      • 28. Hoagg, J.B., Bernstein, D.S.: ‘Nonminimum-phase zeros’, IEEE Control Syst. Mag., 2007, 27, pp. 4557 (doi: 10.1109/MCS.2007.365003).

Related content

This is a required field
Please enter a valid email address