http://iet.metastore.ingenta.com
1887

Robust stability analysis based on finite impulse response scaling for discrete-time linear time-invariant systems

Robust stability analysis based on finite impulse response scaling for discrete-time linear time-invariant systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, we discuss a dynamic scaling approach exploiting the separator-type robust stability condition for discrete-time linear time-invariant systems. We confine ourselves to a class of what we call finite impulse response (FIR) separators, and establish a systematic and practical framework of searching for an FIR separator satisfying the separator-type condition. The first step is to give explicit structure of FIR separators suitable for dealing with a given set of structured uncertainties. The second step is to give an explicit linear matrix inequality condition for the analysis. In particular, a minimal realisation of an augmented system to be dealt with in FIR scaling is derived, which is non-trivial and is very important in reducing the computational load in the numerical computation. Effectiveness of the developed framework is demonstrated numerically, through comparison with the conventional static scaling and μ-analysis.

References

    1. 1)
      • 1. Desoer, C.A., Vidyasagar, M.: ‘Feedback systems: input–output properties’ (Academic Press, 1975).
    2. 2)
      • 2. Safonov, M.G.: ‘Stability and robustness of multivariable Feedback Systems’ (MIT Press, 1980).
    3. 3)
      • 3. Megretski, A., Rantzer, A.: ‘System analysis via integral quadratic constraints’, IEEE Trans. Autm. Control, 1997, 42, (6), pp. 819830 (doi: 10.1109/9.587335).
    4. 4)
      • 4. Iwasaki, T., Hara, S.: ‘Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations’, IEEE Trans. Autom. Control, 1998, 43, (5), pp. 619630 (doi: 10.1109/9.668829).
    5. 5)
      • 5. Fan, M.K.H., Tits, A.L., Doyle, J.C.: ‘Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics’, IEEE Trans. Autom. Control, 1991, 36, (1), pp. 2538 (doi: 10.1109/9.62265).
    6. 6)
      • 6. Rantzer, A.: ‘On the Kalman–Yakubovich–Popov lemma’, Syst. Control Lett., 1996, 28, (1), pp. 710 (doi: 10.1016/0167-6911(95)00063-1).
    7. 7)
      • 7. Hosoe, Y., Hagiwara, T.: ‘Robust stability analysis based on discrete-time FIR scaling’. Proc. 2012 American Control Conf., Montreal, Canada, June 2012, pp. 59725979.
    8. 8)
      • 8. Hagiwara, T.: ‘Note on well-posedness and separator-type robust stability theorem of LTI systems’, SICE J. Control Meas. Syst. Integrat., 2012, 5, (3), pp. 169174 (doi: 10.9746/jcmsi.5.169).
    9. 9)
      • 9. Wahlberg, B.: ‘System identification using Kautz models’, IEEE Trans. Autom. Control, 1994, 39, (6), pp. 12761282 (doi: 10.1109/9.293196).
    10. 10)
      • 10. Wahlberg, B., Makila, P.M.: ‘On approximation of stable linear dynamical systems using Laguerre and Kautz functions’, Automatica, 1996, 32, (5), pp. 693708 (doi: 10.1016/0005-1098(95)00198-0).
    11. 11)
      • 11. Hagiwara, T., Ohara, Y.: ‘Noncausal linear periodically time-varying scaling for robust stability analysis of discrete-time systems: Frequency-dependent scaling induced by static separators’, Automatica, 2010, 46, (1), pp. 167173 (doi: 10.1016/j.automatica.2009.10.019).
    12. 12)
      • 12. Bittanti, S., Colaneri, P.: ‘Periodic systems: filtering and control’ (Springer, 2009).
    13. 13)
      • 13. Hosoe, Y., Hagiwara, T.: ‘Properties of discrete-time noncausal linear periodically time-varying scaling and their relationship with shift-invariance in lifting-timing’, Int. J. Control, 2011, 84, (6), pp. 10671079 (doi: 10.1080/00207179.2011.591432).
    14. 14)
      • 14. Hosoe, Y., Hagiwara, T.: ‘Unified treatment of robust stability conditions for discrete-time systems through an infinite matrix framework’, Automatica, 2013, 49, (5), pp. 14881493 (doi: 10.1016/j.automatica.2013.02.017).
    15. 15)
      • 15. Sturm, J.F.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’, Optim. Methods Softw., 1999, 11, (1–4), pp. 625653 (doi: 10.1080/10556789908805766).
    16. 16)
      • 16. Zhou, K., Doyle, J.C.: ‘Essentials of robust control’ (Prentice-Hall, 1998).
    17. 17)
      • 17. Balas, G.J., Doyle, J.C., Glover, K., Packard, A., Smith, R.: ‘μ-Analysis and synthesis toolbox user's guide’ (MUSYN Inc. and MathWorks, 1994).
    18. 18)
      • 18. Lawrence, C.T., Tits, A.L., van Dooren, P.: ‘A fast algorithm for the computation of an upper bound on the μ-norm’, Automatica, 2000, 36, (3), pp. 449456 (doi: 10.1016/S0005-1098(99)00165-X).
    19. 19)
      • 19. Ferreres, G., Magni, J.F., Biannic, J.M.: ‘Robustness analysis of flexible structures: practical algorithms’, Int. J. Robust Nonlinear Control, 2003, 13, (8), pp. 715733 (doi: 10.1002/rnc.742).
    20. 20)
      • 20. Roos, C., Biannic, J.M.: ‘Efficient computation of a guaranteed stability domain for a high-order parameter dependent plant’. Proc. 2010 American Control Conf., Baltimore, USA, July 2010, pp. 38953900.
    21. 21)
      • 21. Roos, C., Lescher, F., Biannic, J.M., Doll, C., Ferreres, G.: ‘A set of μ-analysis based tools to evaluate the robustness properties of high-dimensional uncertain systems’. Proc. IEEE Multi-Conf. on Systems and Control, Denver, USA, September 2011, pp. 644649.
    22. 22)
      • 22. Scherer, C., Gahinet, P., Chilali, M.: ‘Multiobjective output-feedback control via LMI optimization’, IEEE Trans. Autom. Control, 1997, 42, (7), pp. 896911 (doi: 10.1109/9.599969).
    23. 23)
      • 23. Oliveira, M.C., Geromel, J.C., Bernussou, J.: ‘Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems’, Int. J. Control, 2002, 75, (9), pp. 666679 (doi: 10.1080/00207170210140212).
    24. 24)
      • 24. Scherer, C.W., Kose, I.E.: ‘Robustness with dynamic IQCs: an exact state-space characterization of nominal stability with applications to robust estimation’, Automatica, 2008, 44, (7), pp. 16661675 (doi: 10.1016/j.automatica.2007.10.023).
    25. 25)
      • 25. Veenman, J., Scherer, C.W.: ‘IQC-synthesis with general dynamic multipliers’. Proc. 18th IFAC World Congress, Milano, Italy, August 2011, pp. 46004605.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0053
Loading

Related content

content/journals/10.1049/iet-cta.2013.0053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address