access icon free Dissipative Hamiltonian realisation and decentralised saturated control of multi-machine multi-load power systems

Using the energy-based Hamiltonian function method, this study investigates the decentralised saturated excitation control of multi-machine multi-load power systems based on the structure preserving dynamic model. First, a constructive procedure is proposed for the dissipative Hamiltonian realisation of non-linear differential algebraic systems and transform the power system to its equivalent dissipative Hamiltonian system. Constant feedforward control is proposed to adjust the system to the desired equilibrium point. Then, we put forward a decentralised saturated excitation controller using only the local information. Simulation results show that the proposed control scheme can effectively improve the transient stability of the power system.

Inspec keywords: differential algebraic equations; decentralised control; power system transient stability; feedforward; nonlinear differential equations

Other keywords: constant feedforward control; dissipative Hamiltonian realisation; constructive procedure; energy-based Hamiltonian function method; multimachine multiload power systems; equilibrium point; transient stability; nonlinear differential algebraic systems; local information; structure preserving dynamic model; decentralised saturated excitation control

Subjects: Power system control; Control of electric power systems; Algebra; Algebra; Multivariable control systems

References

    1. 1)
      • 1. Lu, Q., Mei, S.W., Sun, Y.Z.: ‘Nonlinear control of power system (the second version)’ (Tsinghua University Press, Beijing, 2008).
    2. 2)
      • 6. Ortega, R., Galaz, M., Astolfi, A., Sun, Y., Shen, T.: ‘Transient stabilization of multimachine power systems with nontrivial transfer conductances’, IEEE Trans. Autom. Control, 2005, 50, pp. 6075 (doi: 10.1109/TAC.2004.840477).
    3. 3)
      • 16. Wang, Y., Cheng, D., Li, C., Ge, Y.: ‘Dissipative Hamiltonian realization and energy-based L2-disturbance attenuation control of multi-machine power systems’, IEEE Trans. Autom. Control, 2003, 48, pp. 14281433 (doi: 10.1109/TAC.2003.815037).
    4. 4)
      • 13. Xin, H., Gan, D., Huang, M., Wang, K.: ‘Estimating the stability region of singular perturbation power systems with saturation nonlinearities: an linear matrix inequalitybased method’, IET Control Theory Appl., 2010, 4, pp. 351361 (doi: 10.1049/iet-cta.2008.0331).
    5. 5)
      • 24. Wang, H.S., Yung, C.F., Chang, F.: ‘H control for nonlinear descriptor systems’, IEEE Trans. Autom. Control, 2002, 47, pp. 19191925 (doi: 10.1109/TAC.2002.804465).
    6. 6)
      • 17. Wang, Y., Li, C., Cheng, D.: ‘Generalized Hamiltonian realization of time-invariant nonlinear systems’, Automatica, 2003, 39, pp. 14371443 (doi: 10.1016/S0005-1098(03)00132-8).
    7. 7)
      • 3. Wang, K., Xin, H., Gan, D., Ni, Y.: ‘Non-linear robust adaptive excitation controller design in power systems based on a new back-stepping method’, IET Control Theory Appl., 2010, 4, pp. 29472957 (doi: 10.1049/iet-cta.2009.0534).
    8. 8)
      • 8. Hu, T., Lin, Z.: ‘Control systems with actuator saturation: analysis and design’ (Birkhauser, Boston, 2001).
    9. 9)
      • 18. Wang, Y. Z.: ‘General hamiltonian system theory: realization, control and application’ (Science Press, Beijing, 2007).
    10. 10)
      • 10. Yoon, S., Park, J., Yoon, T.: ‘Dynamic anti-windup scheme for feedback linearizable nonlinear control systems with saturating inputs’, Automatica, 2008, 44, pp. 31763180 (doi: 10.1016/j.automatica.2008.10.003).
    11. 11)
      • 12. Xin, H., Gan, D., Qu, Z., Qiu, J.: ‘Impact of saturation nonlinearities/disturbances on the small-signal stability of power systems: an analytical approach’, Electr. Power Syst. Res., 2008, 78, pp. 849860 (doi: 10.1016/j.epsr.2007.06.006).
    12. 12)
      • 20. He, B., Zhang, X.B., Zhao, X.Y.: ‘Transient stabilization of structure preserving power systems with excitation control via energy-shaping’, Electr. Power Energy Syst., 2007, 29, pp. 822830 (doi: 10.1016/j.ijepes.2007.06.003).
    13. 13)
      • 7. Shi, F., Wang, J.: ‘Stabilising control of multi-machine power systems with transmission losses based on pseudo-generalised Hamiltonian theory’, IET Control Theory Appl., 2012, 6, pp. 173181 (doi: 10.1049/iet-cta.2011.0063).
    14. 14)
      • 9. GuBner, T., Jost, M., Adamy, J.: ‘Controller design for a class of nonlinear systems with input saturation using convex optimization’, Syst. Control Lett., 2012, 61, pp. 258265 (doi: 10.1016/j.sysconle.2011.11.003).
    15. 15)
      • 14. Xi, Z., Feng, G., Cheng, D., Lu, Q.: ‘Nonlinear decentralized saturated controller design for power systems’, IEEE Trans. Control Syst. Technol., 2003, 11, pp. 539547 (doi: 10.1109/TCST.2003.813404).
    16. 16)
      • 11. Sun, W., Lin, Z., Wang, Y.: ‘Global asymptotic and finite-gain L2 stabilization of port-controlled Hamiltonian systems subjects to actuator saturation’. American Control Conf., 2009, pp. 18941898.
    17. 17)
      • 2. Bandal, V., Bandyopadhyay, B.: ‘Robust decentralised output feedback sliding mode control technique-based power system stabiliser (PSS) for multimachine power system’, IET Control Theory Appl., 2007, 1, pp. 15121522 (doi: 10.1049/iet-cta:20060393).
    18. 18)
      • 21. Liu, Y.H., Chen, T.J., Li, C.W., Wang, Y.Z., Chu, B.: ‘Energy-based L2 disturbance attenuation excitation control of differential algebraic power systems’, IEEE Trans. Circuits Syst. II, Exprss Briefs, 2008, 55, pp. 10811085 (doi: 10.1109/TCSII.2008.2001966).
    19. 19)
      • 22. Tsolas, N., Arapostathis, A., Varaiya, P.: ‘A structure preserving energy function for power system transient stability analysis’, IEEE Trans. Circuits Syst., 1985, CAS-32, pp. 10411049 (doi: 10.1109/TCS.1985.1085625).
    20. 20)
      • 5. Nechadi, E., Harmas, M.N., Hamzaoui, A., Essounbouli, N.: ‘A new robust adaptive fuzzy sliding mode power system stabilizer’, Int. J. Electr. Power Energy Syst., 2012, 42, pp. 17 (doi: 10.1016/j.ijepes.2012.03.032).
    21. 21)
      • 4. Dehghani, M., Nikravesh, SKY: ‘Full-order nonlinear observer-based excitation controller design for interconnected power systems via exact linearization approach’, Int. J. Electr. Power Energy Syst., 2012, 41, pp. 5462 (doi: 10.1016/j.ijepes.2012.03.007).
    22. 22)
      • 25. Klein, M., Rogers, G.J., Kundur, P., et al: ‘A fundamental study of inter-area oscillations in power systems’, IEEE Trans. Power Syst., 1991, 6, pp. 914921 (doi: 10.1109/59.119229).
    23. 23)
      • 23. Hiskens, I.A., Hill, D.J.: ‘Energy funcitons, transient stability and voltage behavior in power systems with nonlinear loads’, IEEE Trans. Power Syst., 1989, 4, pp. 15251533 (doi: 10.1109/59.41705).
    24. 24)
      • 15. Wei, A.R., Wang, Y.Z.: ‘Stabilization and H control of nonlinear port-controlled Hamiltonian systems subject to actuator saturation’, Automatica, 2010, 46, pp. 20082013 (doi: 10.1016/j.automatica.2010.08.001).
    25. 25)
      • 19. Wang, Y., Cheng, D., Liu, Y., Li, C.: ‘Adaptive H excitation control of multi-machine power systems via the Hamiltonian function method’, Int. J. Control, 2004, 77, pp. 336350 (doi: 10.1080/0020717042000196254).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0026
Loading

Related content

content/journals/10.1049/iet-cta.2013.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading