http://iet.metastore.ingenta.com
1887

Necessary and sufficient conditions to the transitivity in simultaneous stabilisation of time-varying systems

Necessary and sufficient conditions to the transitivity in simultaneous stabilisation of time-varying systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors study the transmission problem in simultaneous stabilisation of discrete time-varying systems in the frame work of nest algebra. The necessary and sufficient conditions are developed for the transitivity and strong transitivity in simultaneous stabilisation, respectively. Some criterions for these two properties are established in terms of singly strong representations of only one or two given plants but not all. Finally, the authors give parameterisations of simultaneous stabilisers when the properties of transitivity hold.

References

    1. 1)
      • 1. Zames, G.: ‘Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms and approximate inverses’, IEEE Trans. Autom. Control, 1981, 28, pp. 301320 (doi: 10.1109/TAC.1981.1102603).
    2. 2)
      • 2. Doyle, G.C., Glover, K., Khargonekar, P.P., Francis, B.A.: ‘State space solutions to standard ℋ2 and ℋ control problems’, IEEE Trans. Autom. Control, 1989, 34, pp. 831847 (doi: 10.1109/9.29425).
    3. 3)
      • 3. Feintuch, A., Saeks, R.: ‘System theory, a Hilbert space approach, in: series in pure and applied mathematics’ (Academic Press, New York, London, 1982).
    4. 4)
      • 4. Lu, Y.F., Xu, X.P.: ‘The stabilization problem for discrete time-varying linear systems’, Syst. Control Lett., 2008, 57, pp. 936939 (doi: 10.1016/j.sysconle.2008.05.003).
    5. 5)
      • 5. Liu, L., Lu, Y.F.: ‘Stability analysis for time-varying systems via quadratic constraints’, Syst. Control Lett., 2011, 60, (10), pp. 832839 (doi: 10.1016/j.sysconle.2011.06.007).
    6. 6)
      • 6. Feintuch, A.: ‘On strong stabilization of asymptotically time-invariant linear time-varying systems’, MCSS, 2011, 22, (3), pp. 229243.
    7. 7)
      • 7. Feintuch, A.: ‘On the strong stabilization of slowly time-varying linear systems’, Syst. Control Lett., 2012, 61, (1), pp. 112116 (doi: 10.1016/j.sysconle.2011.09.007).
    8. 8)
      • 8. Saeks, R., Murray, J.: ‘Fractional representation algebraic geometry, and the simultaneous stabilization problem’, IEEE Trans. Autom. Control, 1982, 27, (4), pp. 895903 (doi: 10.1109/TAC.1982.1103005).
    9. 9)
      • 9. Vidyasagar, M., Viswanadham, N.: ‘Algebraic design techniques for reliable stabilization’, IEEE Trans. Autom. Control, 1982, 27, (5), pp. 10851095 (doi: 10.1109/TAC.1982.1103086).
    10. 10)
      • 10. Vidyasagar, M.: ‘Control system synthesis: a factorization approach’ (MIT Press, Cambridge, MA, 1985).
    11. 11)
      • 11. Lu, Y.F., Xu, X.P.: ‘Simultaneous stabilization for a family of plants’, J. Math. Res. Exposition, 2008, 28, (3), pp. 529534.
    12. 12)
      • 12. Abdallah, C.T., Dorato, P., Bredemann, M.: ‘New sufficient conditions for strong simutaneous stabilization’, Automatica, 1997, 33, (6), pp. 11931196 (doi: 10.1016/S0005-1098(97)00021-6).
    13. 13)
      • 13. Ghosh, B.: ‘Simutaneous partial pole-placement: a new approach to multi-mode design’, IEEE Trans Autom. Control, 1986, 31, pp. 440443 (doi: 10.1109/TAC.1986.1104297).
    14. 14)
      • 14. Yu, T.Q.: ‘The transitivity in simultaneous stabilization’, Syst. Control Lett., 2011, 60, (1), pp. 16 (doi: 10.1016/j.sysconle.2010.09.001).
    15. 15)
      • 15. Dale, W.N., Smith, M.C.: ‘Stabilizability and existence of system representations for discrete-time time-varying systems’, SIAM J. Control Optim., 1993, 60, (1), pp. 15381557 (doi: 10.1137/0331072).
    16. 16)
      • 16. Feintuch, A.: ‘Robust control theory in Hilbert space’ (Springer-Verlag, 1998).
    17. 17)
      • 17. Davidson, K.R., 19, Y.Q.: ‘Topological stable rank of nest algebras’, Proc. Lond. Math. Soc., 2009, 98, issuenumber3, pp. 652678 (doi: 10.1112/plms/pdn048).
    18. 18)
      • 18. Feintuch, A.: ‘The stable rank of a nest algebra and strong stabilization of linear time-varying systems’, Operator Theory: Adv. Appl., 2009, 197, pp. 139148.
    19. 19)
      • 19. Ji, Y.Q., Zhang, Y.H.: ‘Stable ranks of split extensions of Banach algebras’, Linear Algebra Appl., 2011, 434, (10), pp. 21492157 (doi: 10.1016/j.laa.2010.12.009).
    20. 20)
      • 20. Djouadi, S.M.: ‘Commutant lifting for linear time-varying systems’. American Control Con., June, 2009, pp. 40674072.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0011
Loading

Related content

content/journals/10.1049/iet-cta.2013.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address