Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Neural networks impedance control of robots interacting with environments

In this study, neural networks (NN) impedance control is proposed for robot–environment interaction. Iterative learning control is developed to make the robot dynamics follow a given target impedance model. To cope with the problem of unknown robot dynamics, NN are employed such that neither the robot structure nor the physical parameters are required for the control design. The stability and performance of the resulted closed-loop system are discussed through rigorous analysis and extensive remarks. The validity and feasibility of the proposed method are verified through simulation studies.

References

    1. 1)
      • 24. Xu, J.-X., Badrinath, V., Qu, Z.: ‘Robust learning control for robotic manipulators with an extension to a class of nonlinear systems’, Int. J. Control, 2000, 73, (10), pp. 858870 (doi: 10.1080/002071700405842).
    2. 2)
      • 12. Slotine, J.-J.E., Li, W.: ‘On the adaptive control of robotic manipulators’, Int. J. Robot. Res., 1987, 6, (3), pp. 4959 (doi: 10.1177/027836498700600303).
    3. 3)
      • 3. Dupree, K., Liang, C.H., Hu, G., Dixon, W.E.: ‘Adaptive Lyapunov-based control of a robot and mass-spring system undergoing an impact collision’, IEEE Trans. Syst. Man Cybern. B: Cybern., 2008, 38, (4), pp. 10501061 (doi: 10.1109/TSMCB.2008.923154).
    4. 4)
      • 4. Doulgeri, Z., Iliadis, G.: ‘Stability of a contact task for a robotic arm modelled as a switched system’, IET Control Theory Appl., 2007, 1, (3), pp. 844853 (doi: 10.1049/iet-cta:20060191).
    5. 5)
      • 21. Park, S.H., Han, S.I.: ‘Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller’, IET Control Theory Appl., 2010, 5, (12), pp. 13971417 (doi: 10.1049/iet-cta.2010.0460).
    6. 6)
      • 2. Queiroz, M.D., Hu, J., Dawson, D., Burg, T., Donepudi, S.: ‘Adaptive position/force control of robot manipulators without velocity measurements: theory and experimentation’, IEEE Trans. Syst. Man Cybern. B: Cybern., 1997, 27, (5), pp. 796809 (doi: 10.1109/3477.623233).
    7. 7)
      • 5. Karayiannidis, Y., Doulgeri, Z.: ‘Blind force/position control on unknown planar surfaces’, IET Control Theory Appl., 2009, 3, (5), pp. 595603 (doi: 10.1049/iet-cta.2008.0239).
    8. 8)
      • 7. Gillespie, R.B., Colgate, J.E., Peshkin, M.A.: ‘A general framework for Cobot control’, IEEE Trans. Robot. Autom., 2001, 17, (4), pp. 391401 (doi: 10.1109/70.954752).
    9. 9)
      • 14. Wang, D., Cheah, C.C.: ‘An iterative learning-control scheme for impedance control of robotic manipulators’, Int. J. Robot. Res., 1998, 17, (10), pp. 10911099 (doi: 10.1177/027836499801701006).
    10. 10)
      • 27. Jung, S., Hsia, T.C., Bonitz, R.G.: ‘Force tracking impedance control for robot manipulators with an unknown environment: theory, simulation, and experiment’, Int. J. Robot. Res., 2001, 20, (9), pp. 765774 (doi: 10.1177/02783640122067651).
    11. 11)
      • 9. Buerger, S.P., Hogan, N.: ‘Complementary stability and loop shaping for improved human–robot interaction’, IEEE Trans. Robot., 2007, 23, (2), pp. 232244 (doi: 10.1109/TRO.2007.892229).
    12. 12)
      • 19. Cherkassky, V., Ghering, D., Mulier, F.: ‘Comparison of adaptive methods for function estimation from samples’, IEEE Trans. Neural Netw., 1996, 7, (4), pp. 969984 (doi: 10.1109/72.508939).
    13. 13)
      • 18. Chen, T.P., Chen, H.: ‘Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks’, IEEE Trans. Neural Netw., 1995, 6, (4), pp. 904910 (doi: 10.1109/72.392252).
    14. 14)
      • 20. Ge, S.S., Ren, B., Tee, K.P., Lee, T.H.: ‘Approximation based control of uncertain helicopter dynamics’, IET Control Theory Appl., 2009, 3, (7), pp. 941956 (doi: 10.1049/iet-cta.2008.0103).
    15. 15)
      • 16. Li, Y., Ge, S.S., Yang, C.: ‘Learning impedance control for physical robot–environment interaction’, Int. J. Control, 2012, 85, (2), pp. 182193 (doi: 10.1080/00207179.2011.642309).
    16. 16)
      • 17. Li, Y., Ge, S.S., Yang, C., Li, X., Tee, K.P.: ‘Model-free impedance control for safe human–robot interaction’. Proc. IEEE Int. Conf. on Robotics and Automation, Shanghai, China, May 2011, pp. 60216026.
    17. 17)
      • 11. Lu, W.-S., Meng, Q.-H.: ‘Impedance control with adaptation for robotic manipulations’, IEEE Trans. Robot. Autom., 1991, 7, (3), pp. 408415 (doi: 10.1109/70.88152).
    18. 18)
      • 6. Hogan, N.: ‘Impedance control: an approach to manipulation-part I: theory; part II: implementation; part III: applications’, J. Dyn. Syst., Meas. Control, 1985, 107, (1), pp. 124 (doi: 10.1115/1.3140702).
    19. 19)
      • 26. Seraji, H., Colbaugh, R.: ‘Force tracking in impedance control’, Int. J. Robot. Res., 1997, 16, (1), pp. 97117 (doi: 10.1177/027836499701600107).
    20. 20)
      • 15. Cheah, C.C., Wang, D.: ‘Learning impedance control for robotic manipulators’, IEEE Trans. Robot. Autom., 1998, 14, (3), pp. 452465 (doi: 10.1109/70.678454).
    21. 21)
      • 13. Chien, M.C., Huang, A.C.: ‘Adaptive impedance control of robot manipulators based on function approximation technique’, Robotica, 2004, 22, pp. 395403 (doi: 10.1017/S0263574704000190).
    22. 22)
      • 23. Ge, S.S., Hang, C.C., Woon, L.C.: ‘Adaptive neural network control of robot manipulators in task space’, IEEE Trans. Ind. Electron., 1997, 44, (6), pp. 746752 (doi: 10.1109/41.649934).
    23. 23)
      • 8. Lynch, K.M., Liu, C., Sorensen, A., Kim, S., Peshkin, M., Colgate, J.E., Tickel, T., Hannon, D., Shiels, K.: ‘Motion guides for assisted manipulation’, Int. J. Robot. Res., 2002, 21, (1), pp. 2743 (doi: 10.1177/027836402320556467).
    24. 24)
      • 1. Kazerooni, H., Sheridan, T.B., Houpt, P.K.: ‘Robust compliant motion for manipulators, part I: the fundamental concepts of compliant motion’, IEEE J. Robot. Autom., 1986, RA-2, (2), pp. 8392 (doi: 10.1109/JRA.1986.1087045).
    25. 25)
      • 25. Corke, P.I.: ‘A robotics toolbox for Matlab’, IEEE Robot. Autom. Mag., 1996, 3, (1), pp. 2432 (doi: 10.1109/100.486658).
    26. 26)
      • 10. Hirata, Y., Wang, Z., Fukaya, K., Kosuge, K.: ‘Transporting an object by a passive mobile robot with servo brakes in cooperation with a human’, Adv. Robot., 2009, 23, pp. 387404 (doi: 10.1163/156855309X408745).
    27. 27)
      • 22. Ge, S.S., Lee, T.H., Harris, C.J.: ‘Adaptive neural network control of Robotic manipulators’ (World Scientific, 1998).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.1032
Loading

Related content

content/journals/10.1049/iet-cta.2012.1032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address