access icon free Finite-time fault-tolerant control for rigid spacecraft with actuator saturations

This study investigates the finite-time attitude-tracking problem for rigid spacecraft. A novel non-singular terminal sliding-mode control (NTSMC) law is designed to provide finite-time convergence and fast, high control precision even though inertia uncertainties and external disturbances affect the spacecraft systems under actuator failures and saturations. The proposed NTSMC scheme is chattering suppression and singularity-free. Simulation results are presented to demonstrate the efficiency of the proposed method.

Inspec keywords: fault tolerance; aircraft control; variable structure systems; control system synthesis; control nonlinearities; uncertain systems

Other keywords: external disturbances; inertia uncertainties; finite-time convergence; actuator saturations; nonsingular terminal sliding-mode control law design; finite-time fault-tolerant control; finite-time attitude-tracking problem; chattering suppression NTSMC scheme; singularity-free NTSMC scheme; rigid spacecraft system; actuator failures

Subjects: Aerospace control; Control system analysis and synthesis methods; Multivariable control systems; Nonlinear control systems

References

    1. 1)
      • 10. Zou, A.M., Kumar, K.D., Hou, Z.G., Liu, X.: ‘Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (4), pp. 950963 (doi: 10.1109/TSMCB.2010.2101592).
    2. 2)
      • 16. Sidi, M.J.: ‘Spacecraft dynamics and control’ (Cambridge University Press, Cambridge, 1997).
    3. 3)
      • 11. Hu, Q., Huo, X., Xiao, B., Zhang, Z.: ‘Robust finite-time control for spacecraft attitude stabilization under actuator fault’, Proc. Inst. Mech. Eng. I: J. Syst. Control, 2012, 226, (3), pp. 416428 (doi: 10.1177/0959651811399542).
    4. 4)
      • 12. Ding, S., Li, S.: ‘Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques’, Aerosp. Sci. Technol., 2009, 13, (4–5), pp. 256265 (doi: 10.1016/j.ast.2009.05.001).
    5. 5)
      • 31. Corradini, M.L., Cristofaro, A., Giannoni, F., Orlando, G.: ‘Control systems with saturating inputs: analysis tools and advanced design’ (Springer, 2012).
    6. 6)
      • 20. Feng, Y., Yu, X., Han, F.: ‘On nonsingular terminal sliding-mode control of nonlinear systems’, Automatica, 2013, 49, (6), pp. 17151722 (doi: 10.1016/j.automatica.2013.01.051).
    7. 7)
      • 23. Xia, Y., Zhu, Z., Fu, M., Wang, S.: ‘Attitude tracking of rigid spacecraft with bounded disturbances’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 647659 (doi: 10.1109/TIE.2010.2046611).
    8. 8)
      • 3. Pukdeboon, C., Zinober, A.S.I., Thein, M.W.L.: ‘Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 14361444 (doi: 10.1109/TIE.2009.2030215).
    9. 9)
      • 14. Feng, Y., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control of rigid manipulators’, Automatica, 2002, 38, (12), pp. 21592167 (doi: 10.1016/S0005-1098(02)00147-4).
    10. 10)
      • 15. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: ‘Continuous finite-time control for robotic manipulators with terminal sliding mode’, Automatica, 2005, 41, (11), pp. 19571964 (doi: 10.1016/j.automatica.2005.07.001).
    11. 11)
      • 22. Wu, B., Wang, D., Poh, E. K.: ‘Decentralized robust adaptive control for attitude synchronization under directed communication topology’, J. Guid. Control Dyn., 2011, 34, (4), pp. 12761282 (doi: 10.2514/1.50189).
    12. 12)
      • 7. Lu, K., Xia, Y., Fu, M.: ‘Controller design for rigid spacecraft attitude tracking with actuator saturation’, Inf. Sci., 2013, 220, (20), pp. 685699.
    13. 13)
      • 32. Xiao, B., Hu, Q., Friswell, M.I.: ‘Robust fault tolerant control for spacecraft attitude stabilization under actuator faults and bounded disturbance’, J. Dyn. Syst. Meas. Control2011, 133, (5), pp. 051006-1051006-8 (doi: 10.1115/1.4004061).
    14. 14)
      • 18. Jin, M., Lee, J., Chang, P., Choi, C.: ‘Practical nonsingular terminal sliding-mode vontrol of robot manipulators for high-accuracy tracking control’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 35933601 (doi: 10.1109/TIE.2009.2024097).
    15. 15)
      • 8. Du, H., Li, S., Qian, C.: ‘Finite-time attitude tracking control of spacecraft with application to attitude synchronization’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 27112717 (doi: 10.1109/TAC.2011.2159419).
    16. 16)
      • 30. Wheeler, G., Su, C., Stepanenko, Y.: ‘Passive actuators fault-tolerant control for affine nonlinear systems’, IEEE Trans. Control Syst. Technol., 2010, 18, (1), pp. 152163 (doi: 10.1109/TCST.2008.2009641).
    17. 17)
      • 19. Lin, F., Chou, P., Chen, C., Lin, Y.: ‘Three-degree-of-freedom dynamic model-based intelligent nonsingular terminal sliding mode control for a gantry position stage’, IEEE Trans. Fuzzy Syst., 2012, 20, (5), pp. 971985 (doi: 10.1109/TFUZZ.2012.2191412).
    18. 18)
      • 4. Su, J., Cai, K.: ‘Globally stabilizing proportional-integral-derivative control laws for rigid-body attitude tracking’, J. Guid. Control Dyn., 2011, 34, (4), pp. 12601264 (doi: 10.2514/1.52301).
    19. 19)
      • 34. Joshi, S., Kelkar, A., Wen, J.: ‘Robust attitude stabilization of spacecraft using nonlinear quaternion feedback’, IEEE Trans. Autom. Control, 1995, 40, (10), pp. 18001803 (doi: 10.1109/9.467669).
    20. 20)
      • 2. Chen, Z., Huang, J.: ‘Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 600605 (doi: 10.1109/TAC.2008.2008350).
    21. 21)
      • 25. Xia, Y., Lu, K., Zhu, Z., Fu, M.: ‘Adaptive back-stepping sliding mode attitude control of missile systems’, Int. J. Robust Nonlinear Control, 2013, DOI: 10.1002/rnc.2952.
    22. 22)
      • 17. Yuan, J.S.: ‘Closed-loop manipulator control using quaternion feedback’, IEEE Trans. Autom. Control, 1988, 4, (11), pp. 434440.
    23. 23)
      • 26. Huang, Y., Kuo, T., Chang, S.: ‘Adaptive sliding-mode control for nonlinear systems with uncertain parameters’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2008, 38, (2), pp. 534539 (doi: 10.1109/TSMCB.2007.910740).
    24. 24)
      • 9. Jin, E., Sun, Z.: ‘Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control’, Aerosp. Sci. Technol., 2008, 12, (4), pp. 324330 (doi: 10.1016/j.ast.2007.08.001).
    25. 25)
      • 13. Li, S., Wang, Z., Fei, S.: ‘Comments on the paper: robust controllers design with finite time convergence for rigid spacecraft attitude tracking control’, Aerosp. Sci. Technol., 2011, 15, (3), pp. 193195 (doi: 10.1016/j.ast.2010.11.005).
    26. 26)
      • 24. Jafarov, E., Tasaltin, R.: ‘Robust sliding-mode control for the uncertain MIMO aircraft model F-18’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (4), pp. 11271141 (doi: 10.1109/7.892663).
    27. 27)
      • 5. Tafazoli, S., Khorasani, K.: ‘Nonlinear control and stability analysis of spacecraft attitude recovery’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (3), pp. 825845 (doi: 10.1109/TAES.2006.248187).
    28. 28)
      • 33. Zhang, Y., Jiang, J.: ‘Integrated design of reconfigurable fault-tolerant control systems’, J. Guid. Control Dyn., 2000, 24, (1), pp. 133136 (doi: 10.2514/2.4687).
    29. 29)
      • 28. Hu, Q., Xiao, B., Friswell, M.I.: ‘Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation’, IET Control Theory Appl., 2011, 5, (2), pp. 271282 (doi: 10.1049/iet-cta.2009.0628).
    30. 30)
      • 29. Chen, S., Lin, F.: ‘Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system’, IEEE Trans. Control Syst. Technol., 2011, 19, (3), pp. 636643 (doi: 10.1109/TCST.2010.2050484).
    31. 31)
      • 27. Chen, H., Liang, J.: ‘Adaptive sliding control with self-tuning fuzzy compensation for a piezoelectrically actuated X-Y table’, IET Control Theory Appl., 2010, 4, (11), pp. 25162526 (doi: 10.1049/iet-cta.2009.0223).
    32. 32)
      • 21. Gao, W.: ‘Theorem and design method of variable structure control’ (Science Press, Beijing, 1998).
    33. 33)
      • 6. Lu, K., Xia, Y., Zhu, Z., Basin, M.: ‘Sliding mode attitude tracking of rigid spacecraft with disturbances’, J. Franklin Inst., 2012, 349, (2), pp. 413440 (doi: 10.1016/j.jfranklin.2011.07.019).
    34. 34)
      • 1. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: ‘Quaternion-based hybrid control for robust global attitude tracking’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 25552566 (doi: 10.1109/TAC.2011.2108490).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.1031
Loading

Related content

content/journals/10.1049/iet-cta.2012.1031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading