http://iet.metastore.ingenta.com
1887

2 control of discrete-time Markov jump linear systems with uncertain transition probability matrix: improved linear matrix inequality relaxations and multi-simplex modelling

2 control of discrete-time Markov jump linear systems with uncertain transition probability matrix: improved linear matrix inequality relaxations and multi-simplex modelling

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the problem of ℋ2 state-feedback control design for discrete-time Markov jump linear systems (MJLS), assuming that the transition probability matrix is not precisely known, but belongs to a polytopic domain, or contains unknown or bounded elements. As a first contribution, the uncertainties of the transition probability matrix are modelled in terms of the Cartesian product of simplexes, called multi-simplex. Thanks to this representation, the problem of robust mean square stability analysis with an ℋ2 norm bound can be solved through convergent linear matrix inequality (LMI) relaxations constructed in terms of polynomial solutions. The proposed conditions yield a better trade-off between precision and computational effort when compared with other methods. As a second contribution, new conditions in terms of LMIs with a scalar parameter lying in the interval (− 1, 1) are proposed for ℋ2 state-feedback control with complete, partial or no observation of the Markov chain. Owing to the presence of the scalar parameter, less conservative results when compared with other conditions available in the literature can be obtained, at the price of increasing the associated computational effort. Numerical examples illustrate the advantages of the proposed methodology.

References

    1. 1)
      • 1. Ji, Y., Chizeck, H.J.: ‘Controllability, stabilizability and continuous-time Markovian jump linear-quadratic control’, IEEE Trans. Autom. Control, 1990, 35, (7), pp. 777788 (doi: 10.1109/9.57016).
    2. 2)
      • 2. Ji, Y., Chizeck, H.J.: ‘Jump linear quadratic Gaussian control: steady-state and testable conditions’, Control Theory Adv. Technol., 1990, 6, pp. 289319.
    3. 3)
      • 3. Feng, X., Loparo, K.A., Ji, Y., Chizeck, H.J.: ‘Stochastic stability properties of jump linear systems’, IEEE Trans. Autom. Control, 1992, 37, (1), pp. 3853 (doi: 10.1109/9.109637).
    4. 4)
      • 4. Costa, O.L.V., Fragoso, M.D.: ‘Stability results for discrete-time linear systems with Markovian jumping parameters’, J. Math. Anal. Appl., 1993, 179, pp. 154178 (doi: 10.1006/jmaa.1993.1341).
    5. 5)
      • 5. Costa, O.L.V., Fragoso, M.D.: ‘Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems’, IEEE Trans. Autom. Control, 1995, 40, (12), pp. 20762088 (doi: 10.1109/9.478328).
    6. 6)
      • 6. Costa, O.L.V., do Val, J.B.R., Geromel, J.C.: ‘A convex programming approach to ℋ2-control of discrete-time Markovian jump linear systems’, Int. J. Control, 1997, 66, (4), pp. 557579 (doi: 10.1080/002071797224595).
    7. 7)
      • 7. Costa, O.L.V., Assumpção Filho, E.O., Boukas, E.K., Marques, R.P.: ‘Constrained quadratic state feedback control of discrete-time Markovian jump linear systems’, Automatica, 1999, 35, (4), pp. 617626 (doi: 10.1016/S0005-1098(98)00202-7).
    8. 8)
      • 8. Boukas, E.K.: ‘Stochastic switching systems: analysis and design’ (Birkhäuser, Berlin, Germany, 2005).
    9. 9)
      • 9. Costa, O.L.V., Fragoso, M.D., Marques, R.P.: ‘Discrete-time Markovian jump linear systems’ (Springer–Verlag, New York, NY, USA, 2005).
    10. 10)
      • 10. Vargas, A.N., Furloni, W., do Val, J.B.R.: ‘Control of observed Markov jump linear systems with constraints on state and input: a necessary optimality condition’. Proc. Third IFAC Symp. System, Structure and Control (SSSC07), Foz do Iguassu, PR, Brazil, October 2007, pp. 250255.
    11. 11)
      • 11. Yang, T.: ‘Networked control system: a brief survey’, IET Control Theory Appl., 2006, 153, (4), pp. 403412 (doi: 10.1049/ip-cta:20050178).
    12. 12)
      • 12. Zhang, L., Gao, H., Kaynak, O.: ‘Network-induced constraints in networked control systems – a survey’, IEEE Trans. Ind. Inf., 2013, 9, (1), pp. 403416 (doi: 10.1109/TII.2012.2219540).
    13. 13)
      • 13. Xiong, J., Lam, J., Gao, H., Ho, D.W.C.: ‘On robust stabilization of Markovian jump systems with uncertain switching probabilities’, Automatica, 2005, 41, (5), pp. 897903 (doi: 10.1016/j.automatica.2004.12.001).
    14. 14)
      • 14. de Souza, C.E.: ‘Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems’, IEEE Trans. Autom. Control, 2006, 51, (5), pp. 836841 (doi: 10.1109/TAC.2006.875012).
    15. 15)
      • 15. Karan, M., Shi, P., Kaya, C.Y.: ‘Transition probability bounds for the stochastic stability robustness of continuous- and discrete-time Markovian jump linear systems’, Automatica, 2006, 42, pp. 21592168 (doi: 10.1016/j.automatica.2006.07.002).
    16. 16)
      • 16. Oliveira, R.C.L.F., Vargas, A.N., do Val, J.B.R., Peres, P.L.D.: ‘Robust stability, ℋ2 analysis and stabilisation of discrete-time Markov jump linear systems with uncertain probability matrix’, Int. J. Control, 2009, 82, (3), pp. 470481 (doi: 10.1080/00207170802136178).
    17. 17)
      • 17. Boukas, E.K.: ‘Guaranteed cost for stochastic systems with unknown transition jump rate’. Proc. 2009 American Control Conf., St. Louis, MO, USA, June 2009, pp. 44224427.
    18. 18)
      • 18. Xiong, J., Lam, J.: ‘Robust ℋ2 control of Markovian jump systems with uncertain switching probabilities’, Int. J. Syst. Sci., 2009, 40, (3), pp. 255265 (doi: 10.1080/00207720802300347).
    19. 19)
      • 19. Luan, X., Liu, F., Shi, P.: ‘Finite-time filtering for non-linear stochastic systems with partially known transition jump rates’, IET Control Theory Appl., 2010, 4, (5), pp. 735745 (doi: 10.1049/iet-cta.2009.0014).
    20. 20)
      • 20. Ma, S., Boukas, E.K., Chinniah, Y.: ‘Stability and stabilization of discrete-time singular Markov jump systems with time-varying delay’, Int. J. Robust Nonlinear Control, 2010, 20, (5), pp. 531543.
    21. 21)
      • 21. Ma, S., Zhang, C., Zhu, S.: ‘Robust stability for discrete-time uncertain singular Markov jump systems with actuator saturation’, IET Control Theory Appl., 2011, 5, (2), pp. 255262 (doi: 10.1049/iet-cta.2010.0057).
    22. 22)
      • 22. Shen, M., Yang, G.-H.: ‘New analysis and synthesis conditions for continuous Markov jump linear systems with partly known transition probabilities’, IET Control Theory Appl., 2012, 6, (14), pp. 23182325 (doi: 10.1049/iet-cta.2012.0007).
    23. 23)
      • 23. Zhang, L., Boukas, E.K.: ‘Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities’, Automatica, 2009, 45, (2), pp. 463468 (doi: 10.1016/j.automatica.2008.08.010).
    24. 24)
      • 24. Zhang, L., Boukas, E.K.: ‘ control of a class of extended Markov jump linear systems’, IET Control Theory Appl., 2009, 3, (7), pp. 834842 (doi: 10.1049/iet-cta.2008.0023).
    25. 25)
      • 25. Zuo, Z., Liu, Y., Wang, Y., Li, H.: ‘Finite-time stochastic stability and stabilisation of linear discrete-time Markovian jump systems with partly unknown transition probabilities’, IET Control Theory Appl., 2012, 6, (10), pp. 15221526 (doi: 10.1049/iet-cta.2011.0335).
    26. 26)
      • 26. Zhang, Y., He, Y., Wu, M., Zhang, J.: ‘State estimation for Markovian jump systems with time-varying delay and partial information on transition probabilities’, IET Control Theory Appl., 2012, 6, (16), pp. 25492555 (doi: 10.1049/iet-cta.2011.0717).
    27. 27)
      • 27. Oliveira, R.C.L.F., Bliman, P.-A., Peres, P.L.D.: ‘Robust LMIs with parameters in multi-simplex: existence of solutions and applications’. Proc. 47th IEEE Conf. Decision and Control, Cancun, Mexico, December 2008, pp. 22262231.
    28. 28)
      • 28. do Val, J.B.R., Geromel, J.C., Gonçalves, A.P.: ‘The ℋ2-control for jump linear systems: cluster observations of the Markov state’, Automatica, 2002, 38, (2), pp. 343349 (doi: 10.1016/S0005-1098(01)00210-2).
    29. 29)
      • 29. Braga, M.F., Morais, C.F., Oliveira, R.C.L.F., Peres, P.L.D.: ‘Robust stability and stabilization of discrete-time Markov jump linear systems with partly unknown transition probability matrix’. Proc. 2013 American Control Conf., Washington, DC, USA, June 2013, pp. 68006805.
    30. 30)
      • 30. Löfberg, J.: ‘YALMIP: A toolbox for modeling and optimization in MATLAB’. Proc. 2004 IEEE Int. Symp. Computer Aided Control Systems Design, Taipei, Taiwan, September 2004, pp. 284289, http://control.ee.ethz.ch/~joloef/yalmip.php.
    31. 31)
      • 31. Sturm, J.F.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’, Optim. Methods Softw., 1999, 11, (1–4), pp. 625653, http://sedumi.ie.lehigh.edu/. (doi: 10.1080/10556789908805766).
    32. 32)
      • 32. Boukas, E.K.: ‘ control of discrete-time Markov jump systems with bounded transition probabilities’, Optim. Control Appl. Methods, 2009, 30, (5), pp. 477494 (doi: 10.1002/oca.870).
    33. 33)
      • 33. Zhang, L., Boukas, E.K.: ‘Mode-dependent filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities’, Automatica, 2009, 45, (6), pp. 14621467 (doi: 10.1016/j.automatica.2009.02.002).
    34. 34)
      • 34. Bliman, P.-A.: ‘An existence result for polynomial solutions of parameter-dependent LMIs’, Syst. Control Lett., 2004, 51, (3–4), pp. 165169 (doi: 10.1016/j.sysconle.2003.08.001).
    35. 35)
      • 35. Oliveira, R.C.L.F., Peres, P.L.D.: ‘Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations’, IEEE Trans. Autom. Control, 2007, 52, (7), pp. 13341340 (doi: 10.1109/TAC.2007.900848).
    36. 36)
      • 36. Scherer, C.W.: ‘Higher-order relaxations for robust LMI problems with verifications for exactness’. Proc. 42nd IEEE Conf. Decision and Control, Maui, HI, USA, December 2003, pp. 46524657.
    37. 37)
      • 37. Scherer, C.W.: ‘Relaxations for robust linear matrix inequality problems with verifications for exactness’, SIAM J. Matrix Anal. Appl., 2005, 27, (2), pp. 365395 (doi: 10.1137/S0895479803430953).
    38. 38)
      • 38. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’ (SIAM Studies in Applied Mathematics, Philadelphia, PA, 1994).
    39. 39)
      • 39. Gahinet, P., Apkarian, P.: ‘A linear matrix inequality approach to ℋ control’, Int. J. Robust Nonlinear Control, 1994, 4, (4), pp. 421448 (doi: 10.1002/rnc.4590040403).
    40. 40)
      • 40. Iwasaki, T., Skelton, R.E.: ‘All controllers for the general ℋ control problem: LMI existence conditions and state-space formulas’, Automatica, 1994, 30, (8), pp. 13071317 (doi: 10.1016/0005-1098(94)90110-4).
    41. 41)
      • 41. Pipeleers, G., Demeulenaere, B., Swevers, J., Vandenberghe, L.: ‘Extended LMI characterizations for stability and performance of linear systems’, Syst. Control Lett., 2009, 58, (7), pp. 510518 (doi: 10.1016/j.sysconle.2009.03.001).
    42. 42)
      • 42. Blair, W.P., Sworder, D.D.: ‘Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria’, Int. J. Control, 1975, 21, (5), pp. 833841 (doi: 10.1080/00207177508922037).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.1015
Loading

Related content

content/journals/10.1049/iet-cta.2012.1015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address