access icon free Dynamics and swing control of mobile boom cranes subject to wind disturbances

Operating cranes is challenging because payloads can experience large and dangerous oscillations. The oscillations are induced by both intentional motions commanded by the human operator and by external disturbances. Although significant progress has been achieved by using command shaping to reduce operator-induced vibration, less success has been achieved on reducing oscillations induced by external disturbances, such as wind. The disturbance-rejection task is more challenging because it requires accurate sensing of the crane payload. This study presents a combined command shaping and feedback control architecture. The input shaper eliminates the payload oscillation caused by human-operator commands, and the feedback controller reduces the effect of wind gusts. Simulations of a large range of motions are used to analyse the dynamic behaviour of boom cranes using the proposed controller. Experimental results obtained from a small-scale boom crane validate the simulated dynamic behaviour and the effectiveness of the controller.

Inspec keywords: motion control; feedback; vibration control; oscillations; cranes

Other keywords: swing control; human operator command; operator induced vibration; payload oscillation; wind disturbance; feedback control architecture; intentional motion command; combined command shaping; dangerous oscillation; crane payload; mobile boom crane; wind gusts; disturbance rejection task; dynamic behaviour simulation

Subjects: Materials handling equipment; Mechanical components; Mechanical variables control; Vibrations and shock waves (mechanical engineering); Control applications to materials handling; Spatial variables control; Control technology and theory (production)

References

    1. 1)
      • 24. Blajer, W., Kołodziejczyk, K.: ‘Improved DAE formulation for inverse dynamics simulation of cranes’, Multibody Syst. Dyn., 2011, 25, (2), pp. 131143 (doi: 10.1007/s11044-010-9227-6).
    2. 2)
      • 8. Starr, G.P.: ‘Swing-free transport of suspended objects with a path-controlled robot manipulator’, J. Dyn. Syst. Meas. Control, 1985, 107, (1), pp. 97100 (doi: 10.1115/1.3140715).
    3. 3)
      • 25. Maleki, E., Singhose, W.: ‘Dynamics and control of a small-scale boom crane’, J. Comput. Nonlinear Dyn., 2011, 6, (3), article id 031015 (doi: 10.1115/1.4003251).
    4. 4)
      • 15. Tuttle, T.D., Seering, W.P.: ‘Vibration reduction in flexible space structures using input shaping on mace: mission results’. Proc. IFAC World Congress, San Francisco, CA, 1996, pp. 5560.
    5. 5)
      • 26. Vaughan, J., Yano, A., Singhose, W.: ‘Comparison of robust input shapers’, J. Sound Vib., 2008, 315, (4–5), pp. 797815 (doi: 10.1016/j.jsv.2008.02.032).
    6. 6)
      • 18. Freese, M., Fukushima, E.F., Hirose, S., Singhose, W.: ‘Endpoint vibration control of a mobile endpoint vibration control of a mobile mine-detecting robotic manipulator’. Proc. American Control Conf., New York, 2007, pp. 712.
    7. 7)
      • 12. Masoud, Z.N., Daqaq, M.F.: ‘A graphical approach to input-shaping control design for container cranes with hoist’, IEEE Trans. Control Syst. Technol., 2006, 14, (6), pp. 10701077 (doi: 10.1109/TCST.2006.883194).
    8. 8)
      • 9. Robertson, M., Singhose, W.: ‘Robust discrete-time deflection-limiting commands for flexible systems’, IET Control Theory Appl., 2009, 3, (4), pp. 473480 (doi: 10.1049/iet-cta.2007.0276).
    9. 9)
      • 3. Blajer, W., Kolodziejczyk, K.: ‘Motion planning and control of gantry cranes in cluttered work environment’, IET Control Theory Appl., 2007, 1, (5), pp. 13701379 (doi: 10.1049/iet-cta:20060439).
    10. 10)
      • 5. Ngo, Q.H., Hong, K.S.: ‘Adaptive sliding mode control of container cranes’, IET Control Theory Appl., 2012, 6, (5), pp. 662668 (doi: 10.1049/iet-cta.2010.0764).
    11. 11)
      • 23. Heyden, T., Woernle, C.: ‘Dynamics and flatness-based control of a kinematically underdetermined cable suspension manipulator’, Multibody Syst. Dyn., 2006, 16, (2), pp. 155177 (doi: 10.1007/s11044-006-9023-5).
    12. 12)
      • 14. Jones, S., Ulsoy, A.G.: ‘An approach to control input shaping with application to coordinate measuring machines’, J. Dyn. Meas. Control, 1999, 121, (2), pp. 242247 (doi: 10.1115/1.2802461).
    13. 13)
      • 13. Ngo, Q.H., Hong, K.-S.: ‘Skew control of a quay container crane’, J. Mech. Sci. Technol., 2009, 23, (12), pp. 33323339 (doi: 10.1007/s12206-009-1020-1).
    14. 14)
      • 20. Chang, T., Sun, X.: ‘Analysis and control of monolithic piezoelectric nano-actuator’, IEEE Trans. Control Syst. Technol., 2001, 9, (1), pp. 6975 (doi: 10.1109/87.896747).
    15. 15)
      • 16. Magee, D.P., Book, W.J.: ‘Filtering micro-manipulator wrist commands to prevent flexible base motion’. Proc. American Control Conf., Seattle, WA, 1995, pp. 474479.
    16. 16)
      • 11. Lewis, D., Parker, G.G., Driessen, B., Robinett, R.D.: ‘Command shaping control of an operator-in-the-loop boom crane’. Proc. American Control Conf., Philadelphia, PA, 1998, pp. 26432647.
    17. 17)
      • 22. Sorensen, K., Singhose, W., Dickerson, S.: ‘A controller enabling precise positioning and sway reduction in bridge and gantry cranes’, Control Eng. Pract., 2007, 15, (7), pp. 825837 (doi: 10.1016/j.conengprac.2006.03.005).
    18. 18)
      • 2. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: ‘Dynamics and control of cranes: a review’, J. Vib. Control, 2003, 9, (7), pp. 863908 (doi: 10.1177/1077546303009007007).
    19. 19)
      • 10. Lawrence, J., Singhose, W.: ‘Command shaping slewing motions for tower cranes’, J. Vib. Acoust., 2010, 132, (1), article id 011002 (doi: 10.1115/1.3025845).
    20. 20)
      • 7. Vaughan, J., Maleki, E., Singhose, W.: ‘Advantages of using command shaping over feedback for crane control’. Proc. American Control Conf., Baltimore, MD, 2010, pp. 23082313.
    21. 21)
      • 19. Fortgang, J., Singhose, W., Marquez, J.J., Perez, J.: ‘Command shaping for micro-mills and CNC controllers’. Proc. American Control Conf., Portland, OR, 2005, pp. 45314536.
    22. 22)
      • 4. Lin, J., Lin, C.C., Lo, H.S.: ‘Pseudo-inverse Jacobian control with grey relational analysis for robot manipulators mounted on oscillatory bases’, J. Sound Vib., 2009, 326, pp. 421437 (doi: 10.1016/j.jsv.2009.05.027).
    23. 23)
      • 6. Piazzi, A., Visioli, A.: ‘Optimal dynamic-inversion-based control of an overhead crane’, IEE Control Theory Appl., 2002, 149, (5), pp. 405411 (doi: 10.1049/ip-cta:20020587).
    24. 24)
      • 21. Gürleyük, S.S., Cinal, S.: ‘Robust three-impulse sequence input shaper design’, J. Vib. Control, 2007, 13, (12), pp. 18071818 (doi: 10.1177/1077546307080012).
    25. 25)
      • 27. Singhose, W., Seering, W., Singer, N.: ‘Residual vibration reduction using vector diagrams to generate shaped inputs’, J. Mech. Des., 1994, 116, (2), pp. 654659 (doi: 10.1115/1.2919428).
    26. 26)
      • 17. Chang, T., Godbole, K., Hou, E.: ‘Optimal input shaper design for high-speed robotic workcells’, J. Vib. Control, 2003, 9, (12), pp. 13591376 (doi: 10.1177/107754603031165).
    27. 27)
      • 1. Kim, D., Singhose, W.: ‘Performance studies of human operators driving double-pendulum bridge cranes’, Control Eng. Pract., 2010, 18, (6), pp. 567576 (doi: 10.1016/j.conengprac.2010.01.011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0957
Loading

Related content

content/journals/10.1049/iet-cta.2012.0957
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading