http://iet.metastore.ingenta.com
1887

Geometric approach for observability and accessibility of discrete-time non-linear switched impulsive systems

Geometric approach for observability and accessibility of discrete-time non-linear switched impulsive systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with observability and accessibility of discrete-time non-linear switched impulsive systems, for which the problem is more complicated than that for general discrete systems and has novel features. A new method from the combination of differential geometric theory and Lie group analysis is developed. Specifically, under the geometric framework of the system, infinitesimal invariance for the observability and accessibility is investigated, respectively. Based on the invariance investigation, explicit criteria for local observability and local accessibility are derived. Numerical examples are discussed to show the effectiveness of the proposed methods, and the features of observability and accessibility for discrete switched impulsive systems.

References

    1. 1)
      • 1. Huang, H., Feng, G.: ‘Improved approach to delay-dependent stability analysis of discrete-time systems with time-varying delay’, IET Control Theory Appl., 2010, 4, (10), pp. 21522159 (doi: 10.1049/iet-cta.2009.0225).
    2. 2)
      • 2. Ma, S., Zhang, C., Zhu, S.: ‘Robust stability for discrete-time uncertain singular Markov jump systems with actuator saturation’, IET Control Theory Appl., 2011, 5, (2), pp. 255262 (doi: 10.1049/iet-cta.2010.0057).
    3. 3)
      • 3. Ammar, S., Mabrouk, M., Vivalda, J.C.: ‘On the genericity of the differential observability of controlled discrete-time systems’, SIAM J. Control Optim., 2007, 46, (6), pp. 21822198 (doi: 10.1137/060677938).
    4. 4)
      • 4. Diblík, J., Khusainov, D.Y., Růžičková, M.: ‘Controllability of linear discrete systems with constant coefficients and pure delay’, SIAM J. Control Optim., 2008, 47, pp. 11401149 (doi: 10.1137/070689085).
    5. 5)
      • 5. Holl, J., Schlacher, K.: ‘Analysis and nonlinear control of implicit discrete-time dynamic systems’. Proc. 16th IFAC World Congress, 2005.
    6. 6)
      • 6. Rieger, K., Schlacher, K., Holl, J.: ‘On the observability of discrete-time dynamic systems-A geometric approach’, Automatica, 2008, 44, (8), pp. 20572062 (doi: 10.1016/j.automatica.2007.11.007).
    7. 7)
      • 7. Zhao, S., Sun, J.: ‘A geometric method for observability and accessibility of discrete impulsive nonlinear systems’, Int. J. Syst. Sci., 2012, DOI:10.1080/00207721.2012.659695.
    8. 8)
      • 8. Zhang, B.: ‘Controllability and observability at infinity of linear time-varying descriptor systems’, IET Control Theory Appl., 2009, 3, (12), pp. 16411647 (doi: 10.1049/iet-cta.2008.0412).
    9. 9)
      • 9. Ji, Z., Lin, H., Lee, T.H.: ‘A new perspective on criteria and algorithms for reachability of discrete-time switched linear systems’, Automatica, 2009, 45, (6), pp. 15841587 (doi: 10.1016/j.automatica.2009.02.024).
    10. 10)
      • 10. Ge, S., Sun, Z., Lee, T.: ‘Reachability and controllability of switched linear discrete-time systems’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 14371441 (doi: 10.1109/9.948473).
    11. 11)
      • 11. Chen, L., Sun, J.: ‘Nonlinear boundary value problem of first order impulsive functional differential equations’, J. Math. Anal. Appl., 2006, 318, (2), pp. 726741 (doi: 10.1016/j.jmaa.2005.08.012).
    12. 12)
      • 12. Wu, A.-G., Feng, G., Duan, G.-R., Gao, H.: ‘Stabilising slow-switching laws for switched discrete-time linear systems’, IET Control Theory Appl., 2011, 5, (16), pp. 18431858 (doi: 10.1049/iet-cta.2010.0643).
    13. 13)
      • 13. Shen, L., Sun, J.: ‘Approximate controllability of stochastic impulsive systems with control-dependent coefficients’, IET Control Theory Appl., 2011, 5, (16), pp. 18891894 (doi: 10.1049/iet-cta.2010.0422).
    14. 14)
      • 14. Lee, J.W., Khargonekar, P.P.: ‘Detectability and stabilizability of discrete-time switched linear systems’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 424437 (doi: 10.1109/TAC.2009.2012966).
    15. 15)
      • 15. Pan, S., Sun, J., Zhao, S.: ‘Stabilization of discrete-time Markovian jump linear systems via time-delayed and impulsive controllers’, Automatica, 2008, 44, (11), pp. 29542958 (doi: 10.1016/j.automatica.2008.04.004).
    16. 16)
      • 16. Sun, Z., Ge, S.: ‘Analysis and synthesis of switched linear control systems’, Automatica, 2005, 41, (2), pp. 181195 (doi: 10.1016/j.automatica.2004.09.015).
    17. 17)
      • 17. Li, C.X., Sun, J.T., Sun, R.Y.: ‘Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects’, J. Franklin Inst. B, 2010, 347, (7), pp. 11861198 (doi: 10.1016/j.jfranklin.2010.04.017).
    18. 18)
      • 18. Liu, B., Hill, D.J.: ‘Comparison principle and stability of discrete-time impulsive hybrid systems’, IEEE Trans Circuits Syst., Regul. Pap., 2009, 56, (1), pp. 233245 (doi: 10.1109/TCSI.2008.924897).
    19. 19)
      • 19. Zhao, S.: ‘A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization’, Chaos (Woodbury, NY), 2011, 21, (2), p. 023125 (doi: 10.1063/1.3594046).
    20. 20)
      • 20. Isidori, A.: ‘Nonlinear control systems’ (Springer-Verlag, 1995).
    21. 21)
      • 21. Aranda-Bricaire, E., Kotta, U.: ‘Generalized controlled invariance for discrete-time nonlinear systems with an application to the dynamic disturbance decoupling problem’, IEEE Trans. Autom. Control, 2001, 46, (1), pp. 165171 (doi: 10.1109/9.898712).
    22. 22)
      • 22. Olver, P.J.: ‘Applications of Lie groups to differential equations’ (Springer-Verlag, 2000).
    23. 23)
      • 23. Albertini, F., D’Alessandro, D.: ‘Observability and forward–backward observability of discrete-time nonlinear systems’, Math. Control Signals Syst., 2002, 15, (4), pp. 275290 (doi: 10.1007/s004980200011).
    24. 24)
      • 24. Albertini, F., Sontag, E.D.: ‘Discrete-time transitivity and accessibility: analytic systems’, SIAM J. Control Optim., 1993, 31, pp. 15991622 (doi: 10.1137/0331075).
    25. 25)
      • 25. Aranda-Bricaire, E., Kotta, U., Moog, C.: ‘Linearization of discrete-time systems’, SIAM J. Control Optim., 1996, 34, pp. 19992023 (doi: 10.1137/S0363012994267315).
    26. 26)
      • 26. Jakubczyk, B., Sontag, E.D.: ‘Controllability of nonlinear discrete-time systems: a Lie-algebraic approach’, SIAM J. Control Optim., 1990, 28, pp. 133 (doi: 10.1137/0328001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0919
Loading

Related content

content/journals/10.1049/iet-cta.2012.0919
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address