http://iet.metastore.ingenta.com
1887

Robust stabilisation for a class of stochastic two-dimensional non-linear systems with time-varying delays

Robust stabilisation for a class of stochastic two-dimensional non-linear systems with time-varying delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the robust stabilisation problem for the two-dimensional (2D) discrete non-linear stochastic systems with time-varying delays in states. Based on the well-known Fornasini–Marchesini local state-space model, a more general 2D discrete non-linear system is considered with both stochastic disturbances and time-varying delays. Our attention is focused on the design of a delay-dependent state-feedback controller so that the 2D stochastic non-linear system is guaranteed to be globally asymptotically stabilisable in the mean square. By using the stochastic analysis and some inequality techniques, sufficient criteria ensuring the existence of such controllers are derived in terms of matrix inequalities, which can be effectively solved by resorting to some standard convex optimisation algorithms. Furthermore, such stabilisation results are extended to more general cases where the system matrices contain either polytopic or norm-bounded parameter uncertainties. Finally, a numerical example is provided to demonstrate the applicability of the proposed controller design approach.

References

    1. 1)
      • 1. Fornasini, E., Marchesini, G.: ‘Doubly-indexed dynamical systems: state-space models and structural properties’, Math. Syst. Theory, 1978, 12, pp. 5972 (doi: 10.1007/BF01776566).
    2. 2)
      • 2. Liu, D., Michel, A.N.: ‘Stability analysis of state-space realizations for two-dimensional filters with overflow nonlinearities’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1994, 41, (2), pp. 127137 (doi: 10.1109/81.269049).
    3. 3)
      • 3. Kaczorek, T.: ‘Two-dimensional linear systems’ (Springer–Verlag, Berlin, Germany, 1985).
    4. 4)
      • 4. Liu, D.: ‘Lyapunov stability of two-dimensional digital filters with overflow nonlinearities’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1998, 45, (5), pp. 574577 (doi: 10.1109/81.668870).
    5. 5)
      • 5. Chen, S.-F.: ‘Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities’, Signal Process., 2010, 90, (7), pp. 22652275 (doi: 10.1016/j.sigpro.2010.02.011).
    6. 6)
      • 6. Du, C., Xie, L., Zhang, C.: ‘H control and robust stabilization of two-dimensional systems in Roesser models’, Automatica, 2001, 37, (2), pp. 205211 (doi: 10.1016/S0005-1098(00)00155-2).
    7. 7)
      • 7. Gao, H., Lam, J., Xu, S., Wang, C.: ‘Stability and stabilization of uncertain 2-D discrete systems with stochastic perturbation’, Multidimens. Syst. Signal Process., 2005, 16, pp. 85106 (doi: 10.1007/s11045-004-4739-y).
    8. 8)
      • 8. Paszke, W., Lam, J., Galkowski, K., Xu, S., Lin, Z.: ‘Robust stability and stabilization of 2D discrete state-delayed systems’, Syst. Control Lett., 2004, 51, (3–4), pp. 277291 (doi: 10.1016/j.sysconle.2003.09.003).
    9. 9)
      • 9. Xie, L., Du, C., Soh, Y., Zhang, C.: ‘H and robust control of 2-D systems in FM second model’, Multidimens. Syst. Signal Process., 2002, 13, (3), pp. 265287 (doi: 10.1023/A:1015808429836).
    10. 10)
      • 10. Xu, J.-M., Yu, L.: ‘H control for 2-D discrete state delayed systems in the second FM model’, Acta Autom. Sin., 2008, 34, (7), pp. 809813 (doi: 10.3724/SP.J.1004.2008.00809).
    11. 11)
      • 11. Dey, A., Kar, H.: ‘Robust stability of 2-D discrete systems employing generalized overflow nonlinearities: an LMI approach’, Digital Signal Process., 2011, 21, (2), pp. 262269 (doi: 10.1016/j.dsp.2010.06.010).
    12. 12)
      • 12. Hmamed, A., Mesquine, F., Tadeo, F., Benhayoun, M., Benzaouia, A.: ‘Stabilization of 2D saturated systems by state feedback control’, Multidimens. Syst. Signal Process., 2010, 21, (3), pp. 277292 (doi: 10.1007/s11045-010-0107-2).
    13. 13)
      • 13. Liu, X., Yu, W., Wang, L.: ‘Necessary and sufficient asymptotic stability criterion for 2-D positive systems with time-varying state delays described by Roesser model’, IET Control Theory Appl., 2011, 5, (5), pp. 663668 (doi: 10.1049/iet-cta.2010.0206).
    14. 14)
      • 14. Li, X., Gao, H., Wang, C.: ‘Generalized Kalman–Yakubovich–Popov lemma for 2-D FM LSS model’, IEEE Trans. Autom. Control, 2012, 57, (12), pp. 30903103 (doi: 10.1109/TAC.2012.2200370).
    15. 15)
      • 15. Chen, S.-F., Fong, I.-K.: ‘Delay-dependent robust H filtering for uncertain 2-D state-delayed systems’, Signal Process., 2007, 87, (11), pp. 26592672 (doi: 10.1016/j.sigpro.2007.04.015).
    16. 16)
      • 16. Du, C., Xie, L., Soh, Y.: ‘H filtering of 2-D discrete systems’, IEEE Trans. Signal Process., 2000, 48, (6), pp. 17601768 (doi: 10.1109/78.845933).
    17. 17)
      • 17. Wu, L., Wang, Z., Gao, H., Wang, C.: ‘Filtering for uncertain two-dimensional discrete systems with state delays’, Signal Process., 2007, 87, (9), pp. 22132230 (doi: 10.1016/j.sigpro.2007.03.002).
    18. 18)
      • 18. Wu, L., Shi, P., Gao, H., Wang, C.: ‘H filtering for 2D Markovian jump systems’, Automatica, 2008, 44, (7), pp. 18491858 (doi: 10.1016/j.automatica.2007.10.027).
    19. 19)
      • 19. Wu, L., Lam, J., Wang, C.: ‘Robust H dynamic output feedback control for 2D linear parameter-varying systems’, IMA J. Math. Control Inf., 2009, 26, (1), pp. 2344 (doi: 10.1093/imamci/dnm028).
    20. 20)
      • 20. Li, X., Gao, H.: ‘Robust finite frequency H filtering for uncertain 2-D Roesser systems’, Automatica, 2012, 48, (6), pp. 11631170 (doi: 10.1016/j.automatica.2012.03.012).
    21. 21)
      • 21. Gao, H., Lam, J., Wang, C., Xu, S.: ‘H model reduction for uncertain two-dimensional discrete systems’, Opt. Control Appl. Methods, 2005, 26, (4), pp. 199227 (doi: 10.1002/oca.760).
    22. 22)
      • 22. Yao, J., Wang, W., Ye, S.: ‘Robust stabilization of 2-D state-delayed systems with stochastic perturbation’. 11th Int. Conf. on Control Automation, Robotics and Vision, 7–10 December, Singapore, pp. 195119562010.
    23. 23)
      • 23. Singh, V.: ‘Robust stability of 2-D digital filters employing saturation’, IEEE Signal Process. Lett., 2005, 12, (2), pp. 142145 (doi: 10.1109/LSP.2004.839704).
    24. 24)
      • 24. Liu, Y., Wang, Z., Liang, J., Liu, X.: ‘Synchronization and state estimation for discrete-time complex networks with distributed delays’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2008, 38, (5), pp. 13141325 (doi: 10.1109/TSMCB.2008.925745).
    25. 25)
      • 25. Liu, D., Michel, A.N.: ‘Asymptotic stability of discrete-time systems with saturation nonlinearities to digital filters’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1992, 39, (10), pp. 798807 (doi: 10.1109/81.199861).
    26. 26)
      • 26. Zhu, Q., Hu, G.-D.: ‘Stability and absolute stability of a general 2-D non-linear FM second model’, IET Control Theory Appl., 2011, 5, (1), pp. 239246 (doi: 10.1049/iet-cta.2009.0624).
    27. 27)
      • 27. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, 1994).
    28. 28)
      • 28. El Ghaoui, L., Oustry, F., AitRami, M.: ‘A cone complementarity linearization algorithm for static output-feedback and related problems’, IEEE Trans. Autom. Control, 1997, 42, (8), pp. 11711176 (doi: 10.1109/9.618250).
    29. 29)
      • 29. Leibfritz, F.: ‘An LMI-based algorithm for designing suboptimal static H2/H output feedback controllers’, SIAM J. Control Opt., 2001, 39, (6), pp. 17111735 (doi: 10.1137/S0363012999349553).
    30. 30)
      • 30. Gao, H., Lam, J., Wang, Z.: ‘Discrete bilinear stochastic systems with time-varying delay: stability analysis and control synthesis’, Chaos Solitons Fractals, 2007, 34, pp. 394404 (doi: 10.1016/j.chaos.2006.03.027).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0915
Loading

Related content

content/journals/10.1049/iet-cta.2012.0915
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address