http://iet.metastore.ingenta.com
1887

Global sampled-data output feedback stabilisation of a class of upper-triangular systems with input delay

Global sampled-data output feedback stabilisation of a class of upper-triangular systems with input delay

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the problem of designing a sampled-data output feedback controller to globally stabilise a class of upper-triangular systems with delay in the input. By using a linear observer, a linear dynamic sampled-data output feedback control law is explicitly constructed. To dominate the unknown non-linear perturbing terms and handle the case with a larger input delay, a tunable scaling gain is introduced to the controller by using a coordinates change. With the help of an appropriate Lyapunov–Krasoveskii functional and the technique of sampled-data output-feedback domination, it is shown that the considered upper-triangular non-linear system with any bounded input delay can be globally stabilised by the proposed controller with appropriate gains. Finally, an example is given to verify the efficiency of the proposed method.

References

    1. 1)
      • 1. Teel, A.R.: ‘Feedback stabilization: nonlinear solution to inherently nonlinear problems’. PhD thesis, University of California, Berkeley, 1992.
    2. 2)
      • 2. Lin, W., Li, X.J.: ‘Synthesis of upper-triangular non-linear systems with marginally unstable free dynamics using state-dependent saturation’, Int. J. Control, 1999, 72, (12), 10781086 (doi: 10.1080/002071799220434).
    3. 3)
      • 3. Ding, S., Qian, C., Li, S.: ‘Global stabilization of a class of feedforward systems with lower-order nonlinearities’, IEEE Trans. Autom. Control, 201055, (3), 691696 (doi: 10.1109/TAC.2009.2037455).
    4. 4)
      • 4. Du, H., Qian, C., Li, S.: ‘Global stabilization of a class of uncertain upper-triangular systems under sampled-data control’, Int. J. Robust Nonlinear Control, 2012, 23 (6), 620637 (doi: 10.1002/rnc.2780).
    5. 5)
      • 5. Mazenc, F., Praly, L.: ‘Adding integrations, saturated controls, and stabilization for feedforward systems’, IEEE Trans. Autom. Control, 1996, 41, (11), 15591578 (doi: 10.1109/9.543995).
    6. 6)
      • 6. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: ‘Integrator forwarding: a new recursive nonlinear robust design’, Automatica, 1997, 33, 979984 (doi: 10.1016/S0005-1098(96)00249-X).
    7. 7)
      • 7. Choi, H.-L., Lim, J.-T.: ‘Global exponential stabilization of a class of nonlinear systems by output feedback’, IEEE Trans. Autom. Control, 2005, 50, (2), 255257 (doi: 10.1109/TAC.2004.841886).
    8. 8)
      • 8. Qian, C., Li, J.: ‘Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach’, Int. J. Robust Nonlinear Control, 200616, (9), 441463 (doi: 10.1002/rnc.1074).
    9. 9)
      • 9. Zhai, J., Qian, C.: ‘Global control of nonlinear systems with uncertain output function using homogeneous domination approach’, Int. J. Robust Nonlinear Control, 2012, 22(14):15431561 (doi: 10.1002/rnc.1765).
    10. 10)
      • 10. Frye, M., Ding, S., Qian, C., Li, S.: ‘Fast convergent observer design for output feedback stabilization of a PVTOL aircraft’, IET Control Theory Appl., 2009, 4, (4), 690700 (doi: 10.1049/iet-cta.2009.0158).
    11. 11)
      • 11. Mazenc, F., Mondié, S., Niculescu, S.: ‘Global asymptotic stabilization for chains of integrators with a delay in the input’, IEEE Trans. Autom. Control, 2003, 48, (1), 5763 (doi: 10.1109/TAC.2002.806654).
    12. 12)
      • 12. Mazenc, F., Mondié, S., Francisco, R.: ‘Global asymptotic stabilization of feedforward systems with delay in the input’, IEEE Trans. Autom. Control, 2004, 49, (5), 844850 (doi: 10.1109/TAC.2004.828313).
    13. 13)
      • 13. Ye, X.: ‘Adaptive stabilization of time-delay feedforward nonlinear systems’, Automatica, 2011, 47, (5), 950955 (doi: 10.1016/j.automatica.2011.01.006).
    14. 14)
      • 14. Zhang, X., Baron, L., Liu, Q., Boukas, E.K.: ‘Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems’, IEEE Trans. Autom. Control, 2011, 56, (3), 692697 (doi: 10.1109/TAC.2010.2097150).
    15. 15)
      • 15. Zhang, X., Liu, Q., Baron, L., Boukas, E.K.: ‘Feedback stabilization for high order feedforward nonlinear time-delay systems’, Automatica, 2011, 47, (5), 962967 (doi: 10.1016/j.automatica.2011.01.018).
    16. 16)
      • 16. Niculescu, S., Michiels, W.: ‘Stabilizing a chain of integrators using multiple delays’, IEEE Trans. Autom. Control, 2004, 49, (5), 802807 (doi: 10.1109/TAC.2004.828326).
    17. 17)
      • 17. Choi, H.-L., Lim, J.-T.: ‘Stabilization of a chain of integrators with an unknown delay in the input by adaptive output feedback’, IEEE Trans. Autom. Control, 2006, 51, (8), 13591363 (doi: 10.1109/TAC.2006.878742).
    18. 18)
      • 18. Choi, H.-L., Lim, J.-T.: ‘Output feedback regulation of a chain of integrators with an unknown time-varying delay in the input’, IEEE Trans. Autom. Control, 2010, 55, (1), 263268 (doi: 10.1109/TAC.2009.2036304).
    19. 19)
      • 19. Astrom, K.J., Wittenmark, B.: ‘Computer-controlled systems: theory and design’ (Prentice-Hall, NJ, 1997, 3rd edn.).
    20. 20)
      • 20. Karafyllis, I., Kravaris, C.: ‘Global stability results for systems under sampled-data control’, Int. J. Robust Nonlinear Control, 2009, 19, (10), 11051128 (doi: 10.1002/rnc.1364).
    21. 21)
      • 21. Qian, C., Du, H.: ‘Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control’, IEEE Trans. Autom. Control, 2012, 57, (11), 29342939 (doi: 10.1109/TAC.2012.2193707).
    22. 22)
      • 22. Jung, J.H., Chang, P.H., Stefanov, D.: ‘Discretisation method and stability criteria for non-linear systems under discrete-time time delay control’, IET Control Theory Appl., 2011, 5, (11), 12641276 (doi: 10.1049/iet-cta.2010.0181).
    23. 23)
      • 23. Sung, H.C., Park, J.B., Joo, Y.H.: ‘Robust control of observer-based sampled-data systems: digital redesign approach’, IET Control Theory Appl., 2012, 6, (12), 18421850 (doi: 10.1049/iet-cta.2010.0580).
    24. 24)
      • 24. Karafyllis, I., Krstic, M.: ‘Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold’, IEEE Trans. Autom. Control, 2012, 57, (5), 11411154 (doi: 10.1109/TAC.2011.2170451).
    25. 25)
      • 25. Mazenc, F., Normand-Cyrot, D.: ‘Reduction model approach for linear systems with sampled delayed inputs’, IEEE Trans. Autom. Control, 2013, 58, (5), pp. 12631268 (doi: 10.1109/TAC.2013.2254193).
    26. 26)
      • 26. Monaco, S., Normand-Cyrot, D., Tanasa, V.: ‘Digital stabilization of delayed-input strict-feedforward dynamics’. Proc. 51th IEEE Conf. Decision and Control, 2012, pp 75357540.
    27. 27)
      • 27. Qian, C., Lin, W.: ‘Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm’, IEEE Trans. Autom. Control, 2002, 47, (10), 17101715 (doi: 10.1109/TAC.2002.803542).
    28. 28)
      • 28. Nesšić, D., Teel, A.R., Kokotović, P.V.: ‘Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations’, Syst. Control Lett., 1999, 38, (4–5), 259270 (doi: 10.1016/S0167-6911(99)00073-0).
    29. 29)
      • 29. Qian, C., Lin, W.: ‘A continuous feedback approach to global strong stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2001, 46, (7), 10611079 (doi: 10.1109/9.935058).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0847
Loading

Related content

content/journals/10.1049/iet-cta.2012.0847
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address