http://iet.metastore.ingenta.com
1887

Adaptive predictive control of periodic non-linear auto-regressive moving average systems using nearest-neighbour compensation

Adaptive predictive control of periodic non-linear auto-regressive moving average systems using nearest-neighbour compensation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Many practical non-linear systems can be described by non-linear auto-regressive moving average (NARMA) system models, whose stabilisation problem is challenging in the presence of large parametric uncertainties and non-parametric uncertainties. In this work, to address this challenging problem for a wide class of discrete-time NARMA systems, in which there are uncertain periodic parameters as well as uncertain non-linear part with unknown periodic time delays, we develop adaptive predictive control laws using the key ideas of ‘future outputs prediction’ and ‘nearest-neighbour compensation’, among which the former is carried out to overcome the non-causalness problem and the latter novel idea is proposed to completely compensate for the effect of non-linear uncertainties as well as unknown time delays. To achieve the desired asymptotic tracking performance in the presence of semi-parametric uncertainties with time delays, an ‘n-step parameter update law’ is first designed, based on which an ‘one-step update law’ is then elaborately constructed to obtain smoother closed-loop signals. This study in general develops a systematic adaptive control framework for periodic NARMA systems with guaranteed boundedness stability and asymptotic tracking performance, which are established by rigorous theoretic proof and verified by simulation studies.

References

    1. 1)
      • 1. Loría, A., Nešić, D.: ‘On uniform boundedness of parameterized discrete-time systems with decaying inputs: applications to cascades’, Syst. Control Lett., 2003, 49, pp. 163174 (doi: 10.1016/S0167-6911(02)00319-5).
    2. 2)
      • 2. Califano, C., Monaco, S., Normand-Cyrot, D.: ‘Non-linear non-interacting control with stability in discrete time: a dynamic solution’, Int. J. Control, 2005, 78, (6), pp. 443459 (doi: 10.1080/00207170500089539).
    3. 3)
      • 3. Chen, S., Billings, S.: ‘Representations of nonlinear systems: the NARMAX model’, Int. J. Control, 1989, 49, (3), pp. 10131032.
    4. 4)
      • 4. Xie, L.L., Guo, L.: ‘How much uncertainty can be dealt with by feedback?’, IEEE Trans. Autom. Control, 2000, 45, (12), pp. 22032217 (doi: 10.1109/9.895559).
    5. 5)
      • 5. Li, C.Y., Xie, L.L.: ‘On robust stability of discrete-time adaptive nonlinear control’, Syst. Control Lett., 2006, 55, (6), pp. 452458 (doi: 10.1016/j.sysconle.2005.09.008).
    6. 6)
      • 6. Ma, H.B.: ‘An ‘impossibility’ theorem on a class of high-order discrete-time nonlinear control systems’, Syst. Control Lett., 2008, 57, (6), pp. 497504. Available at: http://dx.doi.org/10.1016/j.sysconle.2007.11.008 (doi: 10.1016/j.sysconle.2007.11.008).
    7. 7)
      • 7. Ma, H.B.: ‘Further results on limitations to the capability of feedback’, Int. J. Control, 2008, 81, (1), pp. 2142. Available at: http://dx.doi.org/ 10.1080/00207170701218333 (doi: 10.1080/00207170701218333).
    8. 8)
      • 8. Zhang, Y.X., Guo, L.: ‘A limit to the capability of feedback’, IEEE Trans. Autom. Control, 2002, 47, (4), pp. 687692 (doi: 10.1109/9.995051).
    9. 9)
      • 9. Ma, H.B., Lum, K.Y.: ‘Adaptive estimation and control for systems with parametric and nonparametric uncertainties’, ‘Adaptive Control’ (I-Tech Education and Publishing, Vienna, AustriaJanuary2009) Ch. 2, pp. 1564. Available at: http://www.intechopen.com/ articles/show/title/adaptive_estimation_and_control_for_systems_with_ parametric_and_nonparametric_uncertainties.
    10. 10)
      • 10. Ma, H.B., Lum, K.Y., Ge, S.S.: ‘Adaptive control for a discrete-time first-order nonlinear system with both parametric and non-parametric uncertainties.’ Proc. 46th IEEE Conf. Decision and Control (CDC2007), New Orleans, Louisiana, USA, December 2007, pp. 48394844.
    11. 11)
      • 11. Xu, J.X., Huang, D.: ‘Spatial periodic adaptive control for rotary machine systems’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 24022408 (doi: 10.1109/TAC.2008.2007531).
    12. 12)
      • 12. Hand, S.H., Kim, Y.H., Ha, I.J.: ‘Iterative identification of state-dependent disturbance torque for high-precision velocity control of servo motors’, IEEE Trans. Autom. Control, 1998, 43, (5), pp. 724729.
    13. 13)
      • 13. Xu, J.X., Panda, S.K., Pan, Y.J., Lee, T.H., Lam, B.H.: ‘A modular control scheme from PMSM speed control with pulsating torque minimization’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 526536 (doi: 10.1109/TIE.2004.825365).
    14. 14)
      • 14. Hull, R., Ham, C., Johson, R.: ‘Systematic design of altitude control systems for a satelite in a circular orbit with guaranteed performance and stability’. Proc. AIAA–USU Conf. Small Satellite, Logan, UT, USA, August 2000.
    15. 15)
      • 15. Chen, L.J., Narendra, K.S.: ‘Nonlinear adaptive control using neural networks and multiple models’, Automatica, 2001, 37, (8), pp. 12451255 (doi: 10.1016/S0005-1098(01)00072-3).
    16. 16)
      • 16. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall PTR, 1995).
    17. 17)
      • 17. Ge, S.S., Yang, C., Dai, S.-L., Jiao, Z.X., Lee, T.H.: ‘Robust adaptive control of a class of nonlinear strict-feedback discrete-time systems with exact output tracking’, Automatica, 2009, 45, (11), pp. 25372545 (doi: 10.1016/j.automatica.2009.07.025).
    18. 18)
      • 18. Zhang, Y., Wen, C.Y., Soh, Y.C.: ‘Robust adaptive control of nonlinear discrete-time systems by backstepping without overparameterization’, Automatica, 2001, 37, (4), pp. 551558 (doi: 10.1016/S0005-1098(00)00186-2).
    19. 19)
      • 19. Chen, X.K., Fukuda, T., Young, K.D.: ‘Adaptive quasi-sliding-mode tracking control for discrete uncertain input-output systems’, IEEE Trans. Ind. Electron., 2001, 48, (1), pp. 216224 (doi: 10.1109/41.904582).
    20. 20)
      • 20. Cheng, C.C., Chien, S.H., Shih, F.C.: ‘Design of robust adaptive variable structure tracking controllers with application to rigid robot manipulators’, IET Control Theory Appl., 2010, 4, (9), pp. 16551664 (doi: 10.1049/iet-cta.2009.0194).
    21. 21)
      • 21. Wu, H.: ‘Adaptive stabilizing state feedback controllers of uncertain dynamical systems with multiple time delays’, IEEE Trans. Autom. Control, 2000, 45, (9), pp. 16971701 (doi: 10.1109/9.880623).
    22. 22)
      • 22. Huang, D., Xu, J.: ‘Discrete-time adaptive control for nonlinear systems with periodic parameters: a lifting approach’, Asian J. Control, 2013, 15, (1), pp. 111 (doi: 10.1002/asjc.535).
    23. 23)
      • 23. Yang, C., Li, Y., Ge, S.S., Lee, T.H.: ‘Adaptive control of a class of discrete-time MIMO nonlinear systems with uncertain couplings’, Int. J. Control, 2010, 83, (10), pp. 21202133 (doi: 10.1080/00207179.2010.508092).
    24. 24)
      • 24. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, NJ, USA, 1996).
    25. 25)
      • 25. Sastry, S.S., Isidori, A.: ‘Adaptive control of linearizable systems’, IEEE Trans. Autom. Control, 1989, 34, (11), pp. 11231131 (doi: 10.1109/9.40741).
    26. 26)
      • 26. Sokolov, V.F.: ‘Adaptive suboptimal tracking for the first-order plant with Lipschitz uncertainty’, IEEE Trans. Autom. Control, 2003, 48, (4), pp. 607612 (doi: 10.1109/TAC.2003.809797).
    27. 27)
      • 27. Zhu, Q.M., Guo, L.Z.: ‘Stable adaptive neurocontrol for nonlinear discrete-time systems’, IEEE Trans. Neural Netw., 2004, 15, (3), pp. 653662 (doi: 10.1109/TNN.2004.826131).
    28. 28)
      • 28. Zhu, F.L., Han, Z.Z.: ‘A note on observers for Lipschitz nonlinear systems’, IEEE Trans. Neural Netw., 2002, 47, (10), pp. 17511754.
    29. 29)
      • 29. Myszkorowski, P.: ‘Robust control of linear discrete-time systems’, Syst. Control Lett., 1994, 22, (4), pp. 277280 (doi: 10.1016/0167-6911(94)90058-2).
    30. 30)
      • 30. Liu, Y.J., Chen, C.L.P., Wen, G.X., Tong, S.C.: ‘Adaptive neural output feedback tracking control for a class of uncertain discretetime nonlinear system’, IEEE Trans. Neural Netw., 2011, 22, (7) pp. 11621167 (doi: 10.1109/TNN.2011.2146788).
    31. 31)
      • 31. Liu, Y.J., Wen, G.X., Tong, S.C.: ‘Direct adaptive NN control for a class of discrete-time nonlinear strict-feedback systems’, Neurocomputing, 2010, 73, (13–15), pp. 24982505 (doi: 10.1016/j.neucom.2010.06.001).
    32. 32)
      • 32. Xu, J.-X., Huang, D.: ‘Discrete-time adaptive control for a class of nonlinear systems with periodic parameters: a lifting approach’. Proc. 2009 Asian Control Conf., Hong Kong, 27–29 August 2009, pp. 678683.
    33. 33)
      • 33. Yang, C., Ge, S.S., Lee, T.H.: ‘Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions’, Automatica, 2009, 45, (1), pp. 270276 (doi: 10.1016/j.automatica.2008.07.009).
    34. 34)
      • 34. Yang, C.G., Ma, H.B.: ‘Adaptive predictive output feedback control with asymptotic tracking’, in Jordan, M.A., (ed.): ‘Discrete time systems’ (I-Tech Education and Publishing, Vienna, Austria, April2011), Ch. 13, pp. 207228. Available at: http://www.intechopen.com/articles/show/title/discrete-time-adaptive-predictive-control-with-asymptotic-output-tracking.
    35. 35)
      • 35. Goodwin, G.C., Ramadge, P.J., Caines, P.E.: ‘Discrete-time multivariable adaptive control’, IEEE Trans. Autom. Control, 1980, 25, (3), pp. 449456 (doi: 10.1109/TAC.1980.1102363).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0809
Loading

Related content

content/journals/10.1049/iet-cta.2012.0809
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address