http://iet.metastore.ingenta.com
1887

Non-fragile H fuzzy filtering for discrete-time non-linear systems

Non-fragile H fuzzy filtering for discrete-time non-linear systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the problem of non-fragile H filtering for discrete-time non-linear systems in Takagi–Sugeno's form. Additive interval uncertainty that reflects imprecision in filter implementation because of finite word length effects is considered. Based on vertex theory and probabilistic robust approach, deterministic and randomised filtering algorithms are proposed, respectively. Compared with the deterministic algorithm, the randomised algorithm has acceptable computational complexity, especially for high-dimensional systems. Two examples are given to illustrate the effectiveness of the proposed algorithms.

References

    1. 1)
      • 1. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE Trans. Syst., Man, Cybern., 1985, 15, (1), pp. 116132 (doi: 10.1109/TSMC.1985.6313399).
    2. 2)
      • 2. Tanaka, K., Sugeno, M.: ‘Stability analysis and design of fuzzy systems’, Fuzzy Sets Syst., 1992, 45, pp. 135156 (doi: 10.1016/0165-0114(92)90113-I).
    3. 3)
      • 3. Feng, G.: ‘A survey on analysis and design of model-based fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (5), pp. 676697 (doi: 10.1109/TFUZZ.2006.883415).
    4. 4)
      • 4. Dong, J., Yang, G.: ‘H controller synthesis via switched PDC scheme for discrete-time T–S fuzzy systems’, IEEE Trans. Fuzzy Syst., 2009, 17, (3), pp. 544555 (doi: 10.1109/TFUZZ.2008.924328).
    5. 5)
      • 5. Dong, J., Yang, G.: ‘Switching fuzzy dynamic output feedback H control for nonlinear systems’, IEEE Trans. Syst., Man. Cybern. B, 2010, 40, (2), pp. 505516 (doi: 10.1109/TSMCB.2009.2028079).
    6. 6)
      • 6. Johansson, M., Rantzer, A., Arzen, K.E.: ‘Piecewise quadratic stability of fuzzy systems’, IEEE Trans. Fuzzy Syst., 1999, 7, (6), pp. 713722 (doi: 10.1109/91.811241).
    7. 7)
      • 7. Choi, D., Park, P.: ‘H state-feedback controller design for discrete time fuzzy systems using fuzzy weighting-dependent Lyapunov functions’, IEEE Trans. Fuzzy Syst., 2003, 11, (2), pp. 271278 (doi: 10.1109/TFUZZ.2003.809903).
    8. 8)
      • 8. Zhang, H., Xie, X, Tong, S.: ‘Homogenous polynomially parameter-dependent H filter designs of discrete-time fuzzy systems’, IEEE Trans. Syst., Man, Cybern. B, Cybern., 2011, 41, (5), pp. 13131322 (doi: 10.1109/TSMCB.2011.2139203).
    9. 9)
      • 9. Li, H., Liu, H., Gao, H., Shi, P.: ‘Reliable fuzzy control for active suspension systems with actuator delay and fault’, IEEE Trans. Fuzzy Syst., 2012, 20, (2), pp. 342357 (doi: 10.1109/TFUZZ.2011.2174244).
    10. 10)
      • 10. Wang, Z.D., Huang, B.: ‘Robust H2/H filtering for linear systems with error variance constraints’, IEEE Trans. Signal Process., 2000, 48, (8), pp. 24632467 (doi: 10.1109/78.852028).
    11. 11)
      • 11. Che, W.-W., Wang, J.-L., Yang, G.-H.: ‘Quantised H filtering for networked systems with random sensor packet losses’, IET Control Theory Appl., 2010, 4, (8), pp. 13391352 (doi: 10.1049/iet-cta.2009.0120).
    12. 12)
      • 12. Nguang, S.K., Assawinchaichote, W.: ‘H filtering for fuzzy dynamical systems with D-stability constraints’, IEEE Trans. Circuits Syst. I, 2003, 50, (11), pp. 15031508 (doi: 10.1109/TCSI.2003.818624).
    13. 13)
      • 13. Su, Y.K., Chen, B., Lin, C., Zhang, H.G.: ‘A new fuzzy H filter design for nonlinear continuous-time dynamic systems with time-varying delays’, Fuzzy Sets Syst., 2009, 160, pp. 35393549 (doi: 10.1016/j.fss.2009.07.003).
    14. 14)
      • 14. Huang, S.J., He, X.Q., Zhang, N.N.: ‘New results on H filter design for nonlinear systems with time delay via T-S fuzzy models’, IEEE Trans. Fuzzy Syst., 2011, 19, (1), pp. 193199 (doi: 10.1109/TFUZZ.2010.2089632).
    15. 15)
      • 15. Zhang, H.B., Zhong, H., Dang, C.Y.: ‘Delay-dependent decentralized H filtering for discrete-time nonlinear interconnected systems with time-varying delay based on the T–S fuzzy model’, IEEE Trans. Fuzzy Syst., 2012, 20, (3), pp. 413443 (doi: 10.1109/TFUZZ.2011.2175231).
    16. 16)
      • 16. An, J.Y., Wen, G.L., Lin, C., Li, R.F.: ‘New results on delay-derivative-dependent fuzzy H filter design for T–S fuzzy systems’, IEEE Trans. Fuzzy Syst., 2011, 19, (4), pp. 770779 (doi: 10.1109/TFUZZ.2011.2123900).
    17. 17)
      • 17. Lin, C., Wang, Q.G., Lee, T.H., He, Y.: ‘Fuzzy weighting-dependent approach to H filter design for time-delay fuzzy systems’, IEEE Trans. Signal Process., 2007, 55, (6), pp. 27462751 (doi: 10.1109/TSP.2007.893761).
    18. 18)
      • 18. Zhou, S., Lam, J., Xue, A.: ‘H filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach’, Fuzzy Sets Syst., 2007, 158, pp. 180193 (doi: 10.1016/j.fss.2006.09.001).
    19. 19)
      • 19. Gao, H., Zhao, Y., Lam, J., Chen, K.: ‘H fuzzy filtering of nonlinear systems with intermittent measurements’, IEEE Trans. Fuzzy Syst., 2009, 17, (2), pp. 291300 (doi: 10.1109/TFUZZ.2008.924206).
    20. 20)
      • 20. Ding, D.-W., Yang, G.: ‘Fuzzy filter design for nonlinear systems in finite-frequency domain’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 935945 (doi: 10.1109/TFUZZ.2010.2058807).
    21. 21)
      • 21. Chang, X., Yang, G.: ‘Nonfragile H filtering of continuous-time fuzzy systems’, IEEE Trans. Signal Process., 2011, 59, (4), pp. 15281538 (doi: 10.1109/TSP.2010.2103068).
    22. 22)
      • 22. Yang, G.H., Che, W.W.: ‘Non-fragile H filter design for linear continuous-time systems’, Automatica, 2008, 44, pp. 28492856 (doi: 10.1016/j.automatica.2008.03.018).
    23. 23)
      • 23. Keel, L.H., Bhattacharyya, S.P.: ‘Robust, fragile, or optimal?IEEE Trans. Autom. Control, 1997, 42, (8), pp. 10981105 (doi: 10.1109/9.618239).
    24. 24)
      • 24. Chang, X., Yang, G.: ‘Non-fragile fuzzy H filter design for nonlinear continuous-time systems with D stability constraints’, Signal Process., 2012, 92, pp. 575586 (doi: 10.1016/j.sigpro.2011.09.003).
    25. 25)
      • 25. Chang, X.: ‘Robust nonfragile H filtering of fuzzy systems with linear fractional parametric uncertainties’, IEEE Trans. Fuzzy Syst., 2012, 20, (6), pp. 10011011 (doi: 10.1109/TFUZZ.2012.2187299).
    26. 26)
      • 26. Yang, G.H., Wang, J.L.: ‘Robust nonfragile Kalman filtering for uncertain linear systems with estimation gain uncertainty’, IEEE Trans. Autom. Control, 2001, 46, (2), pp. 343348 (doi: 10.1109/9.905707).
    27. 27)
      • 27. Mahmoud, M.S.: ‘Resilient linear filtering of uncertain systems’, Automatica, 2004, 40, pp. 17971802 (doi: 10.1016/j.automatica.2004.05.007).
    28. 28)
      • 28. De Oliveira, M.C., Geromel, J.C.: ‘H2 and H filtering design subject to implementation uncertainty’, SIAM J. Control Optim., 2006, 44, (2), pp. 515530 (doi: 10.1137/S0363012903424721).
    29. 29)
      • 29. Yang, G.H., Guo, X.G.: ‘Insensitive H filter design for continuous-time systems with respect to filter coefficient variations’, Automatica, 2010, 46, (11), pp. 18601869 (doi: 10.1016/j.automatica.2010.07.004).
    30. 30)
      • 30. Guo, X.G., Yang, G.H., Che, W.W.: ‘Insensitive dynamic output feedback control with mixed-H norm sensitivity minimization’, J. Franklin Inst., 2013, 350, (1), pp. 7291 (doi: 10.1016/j.jfranklin.2012.11.001).
    31. 31)
      • 31. Ding, D.-W., Li, X., Yin, Y., Sun, C.: ‘Nonfragile H and H2 filter designs for continuous-time linear systems based on randomized algorithms’, IEEE Trans. Ind. Electron., 2012, 59, (12), pp. 44334442 (doi: 10.1109/TIE.2011.2159350).
    32. 32)
      • 32. Duan, Z., Zhang, J., Zhang, C., Mosca, E.: ‘Robust H2 and H filtering for uncertain linear systems’, Automatica, 2006, 42, (11), pp. 19191926 (doi: 10.1016/j.automatica.2006.06.004).
    33. 33)
      • 33. Galafiore, G.C., Campi, M.C.: ‘The scenario approach to robust control design’, IEEE Trans. Autom. Control, 2006, 51, (5), pp. 742753 (doi: 10.1109/TAC.2006.875041).
    34. 34)
      • 34. Rabinovich, S.G.: ‘Measurement errors and uncertainties: theory and practice’ (Springer, 2005).
    35. 35)
      • 35. Widrow, B., Kollar, I.: ‘Quantization noise’ (Cambridge University Press, 2007).
    36. 36)
      • 36. Tempo, R., Galafiore, G.C., Dabbene, F.: ‘Randomized algorithms for analysis and control of uncertain systems’ (Springer–Verlag, 2005).
    37. 37)
      • 37. Galafiore, G.C., Dabbene, F., Tempo, R.: ‘Research on probabilistic methods for control system design’, Automatica, 2011, 47, (7), pp. 12791293 (doi: 10.1016/j.automatica.2011.02.029).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0801
Loading

Related content

content/journals/10.1049/iet-cta.2012.0801
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address