http://iet.metastore.ingenta.com
1887

Robustness analysis of global exponential stability of non-linear systems with time delays and neutral terms

Robustness analysis of global exponential stability of non-linear systems with time delays and neutral terms

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The global stability of non-linear dynamical systems has been investigated extensively in recent decades. It is well known that time delay and neutral term could derail the stability of non-linear systems. This study presents new results on the robustness of the global exponential stability of non-linear systems with respect to time delay and neutral term. Given globally exponentially stable non-linear systems, the problems to be addressed herein are how much time delay and neutral term contraction coefficient are allowed so that the non-linear systems can remain to be globally exponentially stable, in the presence of time delay and neutral term. Upper bounds of allowable time delay and neutral term contraction coefficient will be derived for non-linear systems to sustain their global exponential stability. A numerical example is provided to illustrate the results.

References

    1. 1)
      • 1. Hale, J.K., Verduyn Lunel, S.M.: ‘Introduction to functional differential equations’, (Springer-Verlag, New York, 1993).
    2. 2)
      • 2. Han, Q.-L.: ‘On stability of linear neutral systems with mixed time-delays: a discretized Lyapunov functional approach’, Automatica, 2005, 41, (7), pp. 12091218 (doi: 10.1016/j.automatica.2005.01.014).
    3. 3)
      • 3. Kim, J.H.: ‘Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty’, IEEE Trans. Autom. Control, 2001, 46, pp. 789792 (doi: 10.1109/9.920802).
    4. 4)
      • 4. Kolmanovskii, V.B., Nosov, V.R.: ‘Stability of functional differential equations’ (Academic Press, New York, 1986).
    5. 5)
      • 5. Kuang, Y.: ‘Delay differential equations with applications in population dynamics’ (Academic Press, Boston, 1993).
    6. 6)
      • 6. Brayton, R.K.: ‘Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type’, Q. Appl. Math., 1996, 24, pp. 215224.
    7. 7)
      • 7. Niculescu, S.I.: ‘Delay effects on stability: a robust control approach’ (Springer, Berlin, 2001).
    8. 8)
      • 8. Chen, H., Zhu, C.: ‘Delay-dependent exponential stability for uncertain neutral stochastic linear systems with interval time-varying delay’, IET Control Theory Appl., 2012, 6, (15), pp. 24092418 (doi: 10.1049/iet-cta.2011.0517).
    9. 9)
      • 9. Chen, W., Zheng, W.: ‘Delay-dependent robust stabilization for uncertain neutral systems with distributed delays’, Automatica, 2007, 43, (1), pp. 95104 (doi: 10.1016/j.automatica.2006.07.019).
    10. 10)
      • 10. Han, Q.-L.: ‘A new delay-dependent absolute stability criterion for a class of nonlinear neutral systems’, Automatica, 2008, 44, (1), pp. 272277 (doi: 10.1016/j.automatica.2007.04.009).
    11. 11)
      • 11. Nian, X., Wang, X., Wang, Y., Sun, Z.: ‘Delay-dependent stability for fuzzy neutral system via state matrix decomposition’, IET Control Theory Appl., 2012, 6, (11), pp. 17451751 (doi: 10.1049/iet-cta.2011.0541).
    12. 12)
      • 12. Wu, M., He, Y., She, J.H.: ‘New delay-dependent stability criteria and stabilizing method for neutral systems’, IEEE Trans. Autom. Control, 2004, 49, (12), pp. 22662271 (doi: 10.1109/TAC.2004.838484).
    13. 13)
      • 13. Sipahi, R., Niculescu, S.-I., Abdallah, C.T., Michiels, W., Gu, K.: ‘Stability and stabilization of systems with time delay - limitations and opportunities’, IEEE Control Syst. Mag., 2011, 38, pp. 3865.
    14. 14)
      • 14. Han, Q.L., Gu, K.: ‘On robust stability of time-delay systems with norm bounded uncertain’, IEEE Trans. Autom. Control, 2001, 46, pp. 14261431 (doi: 10.1109/9.948471).
    15. 15)
      • 15. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Exponential mean-square stabilisation for non-linear systems: sampled-data fuzzy control approach’, IET Control Theory Appl., 2012, 6, (18), pp. 27652774 (doi: 10.1049/iet-cta.2012.0387).
    16. 16)
      • 16. Logemann, H., Rebarber, R., Weiss, G.: ‘Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop’, SIAM J. Control Optim., 1994, 34, pp. 572600 (doi: 10.1137/S0363012993250700).
    17. 17)
      • 17. Kolmanovskii, V., Myshkis, A.: ‘Introduction to the theory and applications of functional differential equations’, (Kluwer Academic, Dordrecht, 1999).
    18. 18)
      • 18. Pepe, P., Verriest, E.I.: ‘On the stability of coupled delay differential and continuous time difference equations’, IEEE Trans. Autom. Control, 2003, 48, (8), pp. 14221427 (doi: 10.1109/TAC.2003.815036).
    19. 19)
      • 19. Pepe, P., Jiang, Z.-P., Fridman, E.: ‘A new Lyapunov–Krasovskii methodology for coupled delay differential and difference equations’, Int. J. Control, 2008, 81, (1), 107115 (doi: 10.1080/00207170701383780).
    20. 20)
      • 20. Mao, X.: ‘Stochastic differential equations and applications’ (Harwood, Chichester, 2007, 2nd edn.).
    21. 21)
      • 21. Higham, D.J., Higham, N.J.: ‘Matlab guide’, (SIAM, Philadelphia, 2005, 2nd ed.).
    22. 22)
      • 22. Mao, X.: ‘Exponential stability of nonlinear differential delay equations’, Syst. Control Lett.1996, 28, pp. 159165 (doi: 10.1016/0167-6911(96)00023-0).
    23. 23)
      • 23. Liao, X.: ‘Theory and application of stability for dynamical systems’ (National Defence Industry Press, Beijing, 2000).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0781
Loading

Related content

content/journals/10.1049/iet-cta.2012.0781
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address