access icon free Distributed cooperative control for deployment and task allocation of unmanned aerial vehicle networks

In this study, the authors consider the deployment of unmanned aerial vehicle networks for task accomplishment within a closed region. Each agent with limited sensing range and communication range needs to take charge of the task accomplishment within a part of the whole region. The main objective is to optimise the deployment of the agents such that the maximum travelling time the agents take to reach a place within the surveillance region is minimised. The deployment issue is formulated as the worst-case disc-covering problem and a distributed cooperative control strategy is designed for agents with limited mobility. It is proven that by the proposed control strategy the network configuration converges to a local optimum configuration. Moreover, a combined optimisation approach is developed to improve the performance by optimising the initial configuration. To guarantee the proper working of the designed control strategy and K-connectivity of the network, a distributed topology control scheme is proposed. Finally, the effectiveness of the proposed control strategy is testified by simulation.

Inspec keywords: distributed control; multi-robot systems; control system synthesis; topology; mobile robots; optimisation; autonomous aerial vehicles

Other keywords: network K-connectivity; distributed topology control scheme; maximum travelling time; distributed cooperative control strategy design; unmanned aerial vehicle network deployment; task allocation; limited sensing range; communication range; optimisation approach; network configuration; surveillance region; task accomplishment; limited mobility; worst-case disc-covering problem; local optimum configuration; agent deployment optimisation

Subjects: Optimisation techniques; Mobile robots; Combinatorial mathematics; Aerospace control; Control system analysis and synthesis methods

References

    1. 1)
      • 23. Tanner, H., Jadbabaie, A., Pappas, G.: ‘Stable flocking of mobile agents part II: Dynamic topology’. Proc. IEEE Conf. on Decision and Control, vol. 2, 2003, pp. 20162021.
    2. 2)
      • 22. Tanner, H., Jadbabaie, A., Pappas, G.: ‘Stable flocking of mobile agents, part I: fixed topology’. Proc. IEEE Conf. on Decision and Control, vol. 2, 2003, pp. 20102015.
    3. 3)
      • 19. Jin, Y., Minai, A., Polycarpou, M.: ‘Cooperative real-time search and task allocation in UAV teams’. Proc. IEEE Conf. on Decision and Control, vol. 1, 2003, pp. 712.
    4. 4)
      • 9. Ogren, P., Fiorelli, E., Leonard, N.: ‘Formations with a mission: stable coordination of vehicle group maneuvers’. Proc. 15th Int. Symp. Mathematical Theory of Networks and Systems, vol. 170, 2002.
    5. 5)
      • 10. Bachmayer, R., Leonard, N.: ‘Vehicle networks for gradient descent in a sampled environment (i)’. Proc. IEEE Conf. Decision and Control, vol. 1, 2001, pp. 112117.
    6. 6)
      • 2. Yang, Y., Minai, A., Polycarpou, M.: ‘Decentralized cooperative search by networked UAVs in an uncertain environment’. Proc. American Control Conf., vol. 6, 2004, pp. 55585563.
    7. 7)
      • 18. Nygard, K., Chandler, P., Pachter, M.: ‘Dynamic network flow optimization models for air vehicle resource allocation’. Proc. American Control Conf., vol. 3, 2001, pp. 18531858.
    8. 8)
      • 5. How, J., King, E., Kuwata, Y.: ‘Flight demonstrations of cooperative control for UAV teams’. Proc. AIAA Third ‘Unmanned Unlimited’ Technical Conf., Workshop and Exhibit, vol. 2012, 2004, p. 9.
    9. 9)
      • 6. Gazi, V., Passino, K.: ‘Stability analysis of social foraging swarms: combined effects of attractant/repellent profiles’. Proc. IEEE Conf. on Decision and Control, vol. 3, 2002, pp. 28482853.
    10. 10)
      • 8. Hoskins, D.: ‘Least action approach to collective behavior’. Proc. Society of Photo-Optical Instrumentation Engineers Conf., vol. 2593, 1995, pp. 108120.
    11. 11)
      • 20. Beard, R., McLain, T., Goodrich, M., Anderson, E.: ‘Coordinated target assignment and intercept for unmanned air vehicles’, IEEE Trans. Robot. Autom., 2002, 18, (6), pp. 911922 (doi: 10.1109/TRA.2002.805653).
    12. 12)
      • 3. Stone, L.: ‘Theory of optimal search’ (Academic Press, New York, 1975).
    13. 13)
      • 24. Wang, L., Xiao, F.: ‘Finite-time consensus problems for networks of dynamic agents’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 950955 (doi: 10.1109/TAC.2010.2041610).
    14. 14)
      • 12. Tan, J.: ‘A scalable graph model and coordination algorithms for multi-robot systems’. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2005, pp. 15291534.
    15. 15)
      • 5. How, J., King, E., Kuwata, Y.: ‘Flight demonstrations of cooperative control for UAV teams’. Proc. AIAA Third ‘Unmanned Unlimited’ Technical Conf., Workshop and Exhibit, vol. 2012, 2004, p. 9.
    16. 16)
      • 25. Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., Balas, G.: ‘Decentralized receding horizon control and coordination of autonomous vehicle formations’, IEEE Trans. Control Syst. Technol., 2008, 16, (1), pp. 1933 (doi: 10.1109/TCST.2007.903066).
    17. 17)
      • 4. Hu, J., Xie, L., Lum, K.-Y., Xu, J.: ‘Multiagent information fusion and cooperative control in target search’, IEEE Trans. Control Syst. Technol., 2012, l, (99), p. 1.
    18. 18)
      • 26. Bullo, F., Cortés, J., Martinez, S.: ‘Distributed control of robotic networks’ (Princeton University Press, 2009).
    19. 19)
      • 16. Choi, J., Oh, S., Horowitz, R.: ‘Distributed learning and cooperative control for multi-agent systems’, Automatica, 2009, 45, (12), pp. 28022814 (doi: 10.1016/j.automatica.2009.09.025).
    20. 20)
      • 23. Tanner, H., Jadbabaie, A., Pappas, G.: ‘Stable flocking of mobile agents part II: Dynamic topology’. Proc. IEEE Conf. on Decision and Control, vol. 2, 2003, pp. 20162021.
    21. 21)
      • 2. Yang, Y., Minai, A., Polycarpou, M.: ‘Decentralized cooperative search by networked UAVs in an uncertain environment’. Proc. American Control Conf., vol. 6, 2004, pp. 55585563.
    22. 22)
      • 1. Polycarpou, M., Yang, Y., Passino, K.: ‘A cooperative search framework for distributed agents’. Proc. IEEE Int. Symp. on Intelligent Control, 2001, pp. 16.
    23. 23)
      • 9. Ogren, P., Fiorelli, E., Leonard, N.: ‘Formations with a mission: stable coordination of vehicle group maneuvers’. Proc. 15th Int. Symp. Mathematical Theory of Networks and Systems, vol. 170, 2002.
    24. 24)
      • 13. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420 (doi: 10.1109/TAC.2005.864190).
    25. 25)
      • 11. Ogren, P., Fiorelli, E., Leonard, N.: ‘Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment’, IEEE Trans. Autom. Control, 2004, 49, (8), pp. 12921302 (doi: 10.1109/TAC.2004.832203).
    26. 26)
      • 14. Martí nez, S., Bullo, F.: ‘Optimal sensor placement and motion coordination for target tracking’, Automatica, 2006, 42, (4), pp. 661668 (doi: 10.1016/j.automatica.2005.12.018).
    27. 27)
      • 27. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: ‘Coverage control for mobile sensing networks’, IEEE Trans. Robot. Autom., 2004, 20, (2), pp. 243255 (doi: 10.1109/TRA.2004.824698).
    28. 28)
      • 17. Cortés, J.: ‘Distributed Kriged Kalman filter for spatial estimation’, IEEE Trans. Autom. Control, 2009, 54, (12), pp. 28162827 (doi: 10.1109/TAC.2009.2034192).
    29. 29)
      • 10. Bachmayer, R., Leonard, N.: ‘Vehicle networks for gradient descent in a sampled environment (i)’. Proc. IEEE Conf. Decision and Control, vol. 1, 2001, pp. 112117.
    30. 30)
      • 15. Lynch, K., Schwartz, I., Yang, P., Freeman, R.: ‘Decentralized environmental modeling by mobile sensor networks’, IEEE Trans. Robot., 2008, 24, (3), pp. 710724 (doi: 10.1109/TRO.2008.921567).
    31. 31)
      • 28. Fortune, S.: ‘Voronoi diagrams and delaunay triangulations’, Comput. Euclidean Geom., 1992, 1, (193–233), p. 2.
    32. 32)
      • 7. Burian, E., Yoerger, D., Bradley, A., Singh, H.: ‘Gradient search with autonomous underwater vehicles using scalar measurements’. Proc. Symp. Autonomous Underwater Vehicle Technology, 1996, pp. 8698.
    33. 33)
      • 19. Jin, Y., Minai, A., Polycarpou, M.: ‘Cooperative real-time search and task allocation in UAV teams’. Proc. IEEE Conf. on Decision and Control, vol. 1, 2003, pp. 712.
    34. 34)
      • 22. Tanner, H., Jadbabaie, A., Pappas, G.: ‘Stable flocking of mobile agents, part I: fixed topology’. Proc. IEEE Conf. on Decision and Control, vol. 2, 2003, pp. 20102015.
    35. 35)
      • 18. Nygard, K., Chandler, P., Pachter, M.: ‘Dynamic network flow optimization models for air vehicle resource allocation’. Proc. American Control Conf., vol. 3, 2001, pp. 18531858.
    36. 36)
      • 6. Gazi, V., Passino, K.: ‘Stability analysis of social foraging swarms: combined effects of attractant/repellent profiles’. Proc. IEEE Conf. on Decision and Control, vol. 3, 2002, pp. 28482853.
    37. 37)
      • 8. Hoskins, D.: ‘Least action approach to collective behavior’. Proc. Society of Photo-Optical Instrumentation Engineers Conf., vol. 2593, 1995, pp. 108120.
    38. 38)
      • 21. Ben-Asher, Y., Feldman, S., Gurfil, P., Feldman, M.: ‘Distributed decision and control for cooperative UAVs using ad hoc communication’, IEEE Trans. Control Syst. Technol., 2008, 16, (3), pp. 511516 (doi: 10.1109/TCST.2007.906314).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0779
Loading

Related content

content/journals/10.1049/iet-cta.2012.0779
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading