http://iet.metastore.ingenta.com
1887

Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays

Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study focuses on the asymptotic stability and stabilisation of uncertain linear systems with time-varying delays via delta operator approach. By employing a new model formulation, the time-delayed delta operator system is transformed into an interconnected system for which the uncertainties can become easy to deal with. Based on a two-term approximation of delayed state and scaled small gain theorem, new delay-dependent sufficient conditions of robust asymptotic stability and state-feedback stabilisation of an uncertain delta operator time-delayed system are established by using a novel Lyapunov–Krasovskii functional. The criteria obtained unify some previously suggested relevant methods seen in literature for achieving asymptotic stability and stabilisation of both continuous and discrete systems into the delta operator framework. Numerical examples presented explicitly demonstrate the advantages and effectiveness of the proposed methods.

References

    1. 1)
      • 1. Goodwin, G.C., Leal, R.L., Mayne, D.Q., Middleton, R.H.: ‘Rapprochement between continuous and discrete model reference adaptive control’, Automatica, 1986, 22, (2), pp. 199207 (doi: 10.1016/0005-1098(86)90081-6).
    2. 2)
      • 2. Middleton, R.H., Goodwin, G.C.: ‘Improved finite word length characteristics in digital control using delta operators’, IEEE Trans. Autom. Control, 1986, 31, (11), pp. 10151021 (doi: 10.1109/TAC.1986.1104162).
    3. 3)
      • 3. Hersh, M.A.: ‘The zeros and poles of delta operator systems’, Int. J. Control, 1993, 57, (3), pp. 557575 (doi: 10.1080/00207179308934407).
    4. 4)
      • 4. Neuman, C.P.: ‘Properties of the delta operator model of dynamic physical systems’, IEEE Trans. Syst. Man Cybern., 1993, 23, (1), pp. 296301 (doi: 10.1109/21.214791).
    5. 5)
      • 5. Chen, S., Wu, J., Istepanian, R.H., Chu, J., Whidborne, J.F.: ‘Optimising stability bounds of finite-precision controller structures for sampled-data systems in the δ-operator domain’, IEE Proc. Control Theory Appl., 1999, 146, (6), pp. 517526 (doi: 10.1049/ip-cta:19990745).
    6. 6)
      • 6. Suchomski, P.: ‘Numerical conditioning of delta-domain Lyapunov and Riccati equation’, IEE Proc. Control Theory Appl., 2001, 148, (6), pp. 497501 (doi: 10.1049/ip-cta:20010774).
    7. 7)
      • 7. Suchomski, P.: ‘A J-lossless coprime factorisation approach to H control in delta domain’, Automatica, 2002, 38, (10), pp. 18071814 (doi: 10.1016/S0005-1098(02)00096-1).
    8. 8)
      • 8. Fan, H.: ‘Singular root distribution problem for delta-operator based real polynomials’, Automatica, 1999, 35, (5), pp. 791807 (doi: 10.1016/S0005-1098(98)00218-0).
    9. 9)
      • 9. Kadirkamanathan, V., Halauca, C., Anderson, S.R.: ‘Predictive control of fast-sampled systems using the delta-operator’, Int. J. Syst. Sci., 2009, 40, (7), pp. 745756 (doi: 10.1080/00207720902953177).
    10. 10)
      • 10. Yang, H., Xia, Y., Shi, P.: ‘Observer-based sliding mode control for a class of discrete systems via delta operator approach’, J. Franklin Inst., 2010, 347, (7), pp. 11991213 (doi: 10.1016/j.jfranklin.2010.05.003).
    11. 11)
      • 11. Guo, X.G., Yang, G.H.: ‘H filter design for delta operator formulated systems with low sensitivity to filter coefficient variations’, IET Control Theory Appl., 2011, 5, (15), pp. 16771688 (doi: 10.1049/iet-cta.2010.0500).
    12. 12)
      • 12. Yang, H., Xia, Y., Shi, P., Zhao, L.: ‘Analysis and synthesis of delta operator systems’ (Springer–Verilag, Berlin, Heidelberg, 2012).
    13. 13)
      • 13. Yang, H., Xia, Y., Shi, P., Fu, M.: ‘Stability analysis for high frequency networked control systems’, IEEE Trans. Autom. Control, 2012, 57, (10), pp. 26942700 (doi: 10.1109/TAC.2012.2190194).
    14. 14)
      • 14. Yang, H., Xia, Y.: ‘Low frequency positive real control for delta operator systems’, Automatica, 2012, 48, (8), pp. 17911795 (doi: 10.1016/j.automatica.2012.05.045).
    15. 15)
      • 15. Yin, S., Ding, S.X., Haghani, A., Hao, H., Zhang, P.: ‘A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process’, J. Process Control, 2012, 22, (9), pp. 15671581 (doi: 10.1016/j.jprocont.2012.06.009).
    16. 16)
      • 16. Yin, S.: ‘Data-driven design of fault diagnosis systems’ (VDI-Verlag Düsseldorf, Germany, 2012).
    17. 17)
      • 17. Du, B., Lam, J., Shu, Z., Wang, Z.: ‘A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components’, IET Control Theory Appl., 2009, 3, (4), pp. 383390 (doi: 10.1049/iet-cta.2007.0321).
    18. 18)
      • 18. Sakthivel, R., Mathiyalagan, K., Anthoni, S.M.: ‘Robust H control for uncertain discrete-time stochastic neural networks with time-varying delays’, IET Control Theory Appl., 2012, 6, (9), pp. 12201228 (doi: 10.1049/iet-cta.2011.0254).
    19. 19)
      • 19. Xie, D., Wu, Y.: ‘Stabilisation of time-delay switched systems with constrained switching signals and its applications in networked control systems’, IET Control Theory Appl., 2010, 4, (10), pp. 21202128 (doi: 10.1049/iet-cta.2009.0016).
    20. 20)
      • 20. Chen, S.H., Chou, F.I., Chou, J.H.: ‘Robust controllability of linear systems with multiple delays in control’, IET Control Theory Appl., 2012, 6, (10), pp. 15521556 (doi: 10.1049/iet-cta.2011.0486).
    21. 21)
      • 21. Kwon, O.M., Park, M.J., Park, J.H., Lee, S.M., Cha, E.J.: ‘Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities’, IET Control Theory Appl., 2012, 6, (16), pp. 25672575 (doi: 10.1049/iet-cta.2012.0257).
    22. 22)
      • 22. Yin, S., Ding, S.X., Haghani, A., Hao, H.: ‘Data-driven monitoring for stochastic systems and its application on batch process’. Int. J. Syst. Sci., 2013, 44, (7), pp. 13661376 (doi: 10.1080/00207721.2012.659708).
    23. 23)
      • 23. Lam, J., Shu, Z., Xu, S., Boukas, E.K.: ‘Robust H control of descriptor discrete-time Markovian jump systems’, Int. J. Control, 2007, 80, (3), pp. 374385 (doi: 10.1080/00207170600999322).
    24. 24)
      • 24. Peng, C.: ‘Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality’, IET Control Theory Appl., 2012, 6, (3), pp. 448453 (doi: 10.1049/iet-cta.2011.0109).
    25. 25)
      • 25. Wang, Z., Ho, D.W.C., Liu, Y., Liu, X.: ‘Robust H control for a class of nonlinear discrete time-delay stochastic systems with missing measurements’, Automatica, 2009, 45, (3), pp. 684691 (doi: 10.1016/j.automatica.2008.10.025).
    26. 26)
      • 26. Wang, Z., Liu, Y., Wei, G., Liu, X.: ‘A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances’, Automatica, 2010, 46, (3), pp. 543548 (doi: 10.1016/j.automatica.2009.11.020).
    27. 27)
      • 27. Zhang, J., Xia, Y., Shi, P., Mahmoud, M.S.: ‘New results on stability and stabilisation of systems with interval time-varying delay’, IET Control Theory Appl., 2011, 5, (3), pp. 429436 (doi: 10.1049/iet-cta.2009.0560).
    28. 28)
      • 28. Qiu, J., Yang, H., Shi, P., Xia, Y.: ‘Robust H control for class of discrete-time Markovian jump systems with time-varying delays based on delta operator’, Circuits, Syst. Signal Process., 2008, 27, (5), pp. 627643 (doi: 10.1007/s00034-008-9046-7).
    29. 29)
      • 29. Yang, H., Xia, Y., Qiu, J., Zhang, J.: ‘Filtering for a class of discrete-time systems with time-delays via delta operator approach’, Int. J. Syst. Sci., 2010, 41, (4), pp. 423433 (doi: 10.1080/00207720903045833).
    30. 30)
      • 30. Yang, H., Xia, Y., Shi, P., Fu, M.: ‘Stability of Markovian jump systems over networks via delta operator approach’, Circuits Syst. Signal Process., 2012, 31, (1), pp. 107125 (doi: 10.1007/s00034-010-9263-8).
    31. 31)
      • 31. Zhou, K., Doyle, J.C., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, New Jersey, 1996).
    32. 32)
      • 32. Gu, K., Zhang, Y., Xu, S.: ‘Small gain problem in coupled differential difference equations, time-varying delays, and direct Lyapunov method’, Int. J. Robust Nonlinear Control, 2011, 21, (4), pp. 429451 (doi: 10.1002/rnc.1604).
    33. 33)
      • 33. Fridman, E., Shaked, U.: ‘Input-output approach to stability and l2-gain analysis of systems with time-varying delays’, Syst. Control Lett., 2006, 55, (12), pp. 10411053 (doi: 10.1016/j.sysconle.2006.07.002).
    34. 34)
      • 34. Kao, C., Lincoln, B.: ‘Simple stability criteria for systems with time-varying delays’, Automatica, 2004, 40, (8), pp. 14291434 (doi: 10.1016/j.automatica.2004.03.011).
    35. 35)
      • 35. Qiu, J., Xia, Y., Yang, H., Zhang, J.: ‘Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators’, IET Control Theory Appl., 2008, 2, (1), pp. 8793 (doi: 10.1049/iet-cta:20070070).
    36. 36)
      • 36. Yang, H., Xia, Y., Fu, M., Shi, P.: ‘Robust adaptive sliding mode control for uncertain delta operator systems’, Int. J. Adapt. Control Signal Process., 2010, 24, (8), pp. 623632.
    37. 37)
      • 37. Xiang, Z., Chen, Q., Zhang, R.: ‘Robust stability analysis and control for fuzzy systems with uncertainties using the delta operator’, Control Decision, 2003, 18, (6), pp. 720723.
    38. 38)
      • 38. Li, X., Gao, H.: ‘A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis’, IEEE Trans. Autom. Control, 2011, 56, (9), pp. 21722178 (doi: 10.1109/TAC.2011.2146850).
    39. 39)
      • 39. Won, W., Lee, K.S.: ‘Identification of a multivariable delta-operator stochastic state-space model with distributed time delays: application to a rapid thermal processor’, Comput. Chem. Eng., 2012, 40, (11), pp. 223230 (doi: 10.1016/j.compchemeng.2012.01.019).
    40. 40)
      • 40. Yang, H., Xia, Y., Shi, P., Fu, M.: ‘A novel delta operator Kalman filter design and convergence analysis’, IEEE Trans. Circuits Syst. I, 2011, 58, (10), pp. 24582468 (doi: 10.1109/TCSI.2011.2131330).
    41. 41)
      • 41. Jiang, X., Han, Q., Yu, X.: ‘Stability criteria for linear discrete-time systems with interval-like time-varying delay’. Proc. American Control Conf., Portland, OR, USA, June 2005, pp. 28172822.
    42. 42)
      • 42. Gu, K.: ‘An integral inequality in the stability problem of time-delay systems’. Proc. 39th IEEE Conf. Decision and Control, Sydney, Australia, 2000, pp. 28052810.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0749
Loading

Related content

content/journals/10.1049/iet-cta.2012.0749
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address