http://iet.metastore.ingenta.com
1887

Distributed Kalman filtering: a bibliographic review

Distributed Kalman filtering: a bibliographic review

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this study, a bibliographical review on distributed Kalman filtering (DKF) is provided. The study contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area.

References

    1. 1)
      • 1. Luo, Y., Zhu, Y., Luo, D., Zhou, J., Song, E., Wang, D.: ‘Globally optimal multi-sensor distributed random parameter matrices Kalman filtering fusion with applications’, Sensors2008, 8, pp. 80868103 (doi: 10.3390/s8128086).
    2. 2)
      • 2. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: ‘Distributed Kalman filtering based on consensus strategies’. Technical Report, Information Engineering Department, University of Padova, Padova, Italy, 2007.
    3. 3)
      • 3. Luo, D.D., Zhu, Y.M.: ‘Applications of random parameter matrices Kalman filtering in Uncertain observation and multi-model systems’. Proc. Int. Federation of the Automatic Control, Seoul, Korea, 6–11 July, 2008.
    4. 4)
      • 4. Zhu, Y.M., You, Z.S., Zhao, J., Zhang, K.-S., Rong Li, X.: ‘The optimality for the distributed Kalman filtering fusion with feedback’, Automatica, 2001, 37, pp. 14891493 (doi: 10.1016/S0005-1098(01)00074-7).
    5. 5)
      • 5. Jiang, T., Matei, I., Baras, J.S.: ‘A trust-based distributed Kalman filtering approach for mode estimation in power systems’. Proc. First Workshop on Secure Control Systems (SCS), Stockholm, Sweden, 12 April, 2010, pp. 16.
    6. 6)
      • 6. Olfati-Saber, R.: ‘Distributed Kalman filtering for sensor networks’. Proc. 46th IEEE Conf. on Decision and Control, 2007, pp. 54925498.
    7. 7)
      • 7. Spanos, D.P., Olfati-Saber, R., Murray, R.M.: ‘Approximate distributed Kalman filtering in sensor networks with quantifiable performance’. Fourth Int. Symp. on Information Processing in Sensor Networks (IPSN'05), April 2005, pp. 133139.
    8. 8)
      • 8. Jiang, P., Zhou, J., Zhu, Y.: ‘Globally optimal Kalman filtering with finite-time correlated noises’, 49th IEEE Conf. on Decision and Control, 15–17 December, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA, pp. 50075012.
    9. 9)
      • 9. Govaers, F., Koch, W.: ‘Distributed Kalman filter fusion at arbitrary instants of time’. 2010 13th Conf. on Information Fusion (FUSION), 26–29 July 2010, Sensor Data and Inf. Fusion, University of Bonn, Bonn, Germany, pp. 18.
    10. 10)
      • 10. Deng, Z.L., Gao, Y., Mao, L., Li, Y., Hao, G.: ‘New approach to information fusion steady-state Kalman filtering’, Automatica, 2005, 41, (10), pp. 16951707 (doi: 10.1016/j.automatica.2005.04.020).
    11. 11)
      • 11. Yingting, L., Yunmin, Z.: ‘Distributed Kalman filtering fusion with packet loss or intermittent communications from local estimators to fusion center’. Proc. 29th Chinese Control Conf., 29–31 July, 2010, Beijing, China, pp. 47684775.
    12. 12)
      • 12. Olfati-Saber, R.: ‘Distributed Kalman filter with consensus filters’. Proc. 44th Em-bedded IEEE Conf. Decision and Control, Seville, Spain, December 2005, pp. 81798184.
    13. 13)
      • 13. Kirti, S., Scaglione, A.: ‘Scalable distributed Kalman filtering through consensus’. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP, April 2008.
    14. 14)
      • 14. Saber, O.R.: ‘Distributed Kalman filter for sensor networks’. Proc. 46th IEEE Conf. on Decision and Control, New Orleans, December 2007, pp. 54925498.
    15. 15)
      • 15. Alriksson, P., Rantzer, A.: ‘Experimental evaluation of a distributed Kalman filter algorithm’. Proc. 46th IEEE Conf. on Decision and Control, 2007.
    16. 16)
      • 16. Schenato, L., Carli, R., Chiuso, A., Zampieri, S.: ‘Distributed Kalman filtering based on consensus strategies’, IEEE J. Sel. Areas Commun., 2008, 26, (4), pp. 622633 (doi: 10.1109/JSAC.2008.080505).
    17. 17)
      • 17. XiaoJing, S., YingTing, L., YunMin, Z., EnBin, S.: ‘Globally optimal distributed Kalman filtering fusion’, Sci. China Inf. Sci., 2012, 55, (3), pp. 512529; DOI: 10.1007/s11432-011–4538-7 (doi: 10.1007/s11432-011-4538-7).
    18. 18)
      • 18. Quirino, R.B., Bottura, C.P.: ‘An approach for distributed Kalman filtering’, SBA Control Autom., 2001, 12, (1), pp. 1928.
    19. 19)
      • 19. Quirino, R.B., Bottura, C.P., Costa, F.J.T.: ‘A computational structure for parallel and distributed Kalman filtering’. Proc. 12th Brazilian Automatic Control Conf., Uberlandia-MG, Brazil, 14–18 September, 1998.
    20. 20)
      • 20. Assimakis, N.D., Tziallas, G., Koutsonikolas, A., ‘Optimal distributed Kalman filter’. Technical Report, pp. 119.
    21. 21)
      • 21. Usman, A.K., Jose, M.F.M.: ‘Distributing the Kalman filter for large-scale systems’, IEEE Trans. Signal Process., 2008, 56, (10), pp. 49194935 (doi: 10.1109/TSP.2008.927480).
    22. 22)
      • 22. Kar, S., Moura, J.M.F.: ‘Sensor networks with random links: topology design for distributed consensus’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 33153326 (doi: 10.1109/TSP.2008.920143).
    23. 23)
      • 23. Saligrama, V., Castanon, D.: ‘Reliable distributed estimation with intermittent communications’. Proc. 45th IEEE Conf. on Decision Control, San Diego, CA, December 2006, pp. 67636768.
    24. 24)
      • 24. Olfati-Saber, R.: ‘Distributed Kalman filters with embedded consensus filters’. Proc. 44th IEEE Conf. on Decision Control, Seville, Spain, December 2005, pp. 81798184.
    25. 25)
      • 25. Olfati-Saber, R., Shamma, J.: ‘Consensus filters for sensor networks and distributed sensor fusion’. Proc. 44th IEEE Conf. on Decision Control, Seville, Spain, December 2005, pp. 66986703.
    26. 26)
      • 26. Kahn, U.A., Moura, J.M.F.: ‘Distributed Kalman filters in sensor networks: bipartite fusion graphs’. Proc. 15th IEEE Workshop Statistical Signal Process., Madison, WI, 26–29 August, 2007, pp. 700704.
    27. 27)
      • 27. Xiao, L., Boyd, S.: ‘Fast linear iterations for distributed averaging’, Syst. Control. Lett., 2004, 53, (1), pp. 6578 (doi: 10.1016/j.sysconle.2004.02.022).
    28. 28)
      • 28. Xiao, L., Boyd, S.: ‘Designing fast distributed iterations via semi-definite programming’, Workshop on Large Scale Nonlinear and Semidefinite Programming, Waterloo, Canada, May 2004.
    29. 29)
      • 29. Alriksson, P., Rantzer, A.: ‘Distributed Kalman filtering using weighted averaging’. 17th Int. Symp. on Mathematical Theory of Networks and Systems, 2006, Kyoto, Japan.
    30. 30)
      • 30. Koch, W.: ‘Exact update formulae for distributed Kalman filtering and retrodiction at arbitrary communication rates’. Proc. 12th ISIF Int. Conf. Information Fusion, FUSION 2009, Seattle, USA, 6–9 July, 2009.
    31. 31)
      • 31. Fong, L.W.: ‘Multi-sensor track-to-track fusion Using simplified maximum likelihood estimator for maneuvering target tracking’. IEEE Int. Symp. on Industrial Electronics, ISIE2007, pp. 3641.
    32. 32)
      • 32. Chang, K.C., Saha, R.K., Shalom, B.Y.: ‘On optimal track-to-track fusion’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (4), pp. 12711276 (doi: 10.1109/7.625124).
    33. 33)
      • 33. Fong, L.W.: ‘Integrated track-to-track fusion with modified probabilistic neural network’. 2006 CIE Int. Conf. on Radar, Shanghai, China, October 2006, pp. 18691873.
    34. 34)
      • 34. Cortes, J.: ‘Distributed kriged Kalman filter for spatial estimation’, IEEE Trans. Autom. Control, 2009, 54, (12), pp. 28162827 (doi: 10.1109/TAC.2009.2034192).
    35. 35)
      • 35. Medeiros, H., Park, J., Kak, A.C.: ‘Distributed object tracking Using a cluster-based Kalman filter in wireless camera networks’, IEEE J. Selected Top. Signal Process., 2008, 2, (4), pp. 448463 (doi: 10.1109/JSTSP.2008.2001310).
    36. 36)
      • 36. Msechu, E.J., Ribeiro, A., Roumeliotis, S.I., Giannakis, G.B.: ‘Distributed Kalman filtering based on quantized innovations’, ICASSP2008, pp. 32933296.
    37. 37)
      • 37. Msechu, E.J., Roumeliotis, S.I., Ribeiro, A., Giannakis, G.B.: ‘Decentralized quantized Kalman filtering with scalable communication cost’, IEEE Trans. Sig. Proc., 2008, 56, (8), pp. 37273741.
    38. 38)
      • 38. Song, E.B., Zhu, Y.M., Zhou, J., You, Z.S.: ‘Optimality Kalman filtering fusion with cross-correlated sensor noises’, Automatica, 2007, 43, pp. 14501456 (doi: 10.1016/j.automatica.2007.01.010).
    39. 39)
      • 39. Chong, C.Y., Chang, K.C., Mori, S.: ‘Distributed tracking in distributed sensor networks’. Proc. American Control Conf., Seattle, 1986.
    40. 40)
      • 40. Hashmipour, H.R., Roy, S., Laub, A.J.: ‘Decentralized structures for parallel Kalman filtering’, IEEE Trans. Autom. Control, 1988, 33, pp. 8893 (doi: 10.1109/9.364).
    41. 41)
      • 41. Hashmipour, H.R., Roy, S., Laub, A.J.: ‘Decentralized structures for parallel Kalman filtering’, IEEE Trans. Autom. Control, 1988, 33, (1), pp. 8893 (doi: 10.1109/9.364).
    42. 42)
      • 42. Shalom, B., , Y.: ‘On the track-to-track correlation problem’, IEEE Trans. Autom. Control, 1981, 26, (2), pp. 571572 (doi: 10.1109/TAC.1981.1102635).
    43. 43)
      • 43. Carlson, N.A.: ‘Federated square root filter for decentralized parallel processes’, IEEE Trans. Aerosp. Electron. Syst., 1990, 26, (3), pp. 517525 (doi: 10.1109/7.106130).
    44. 44)
      • 44. Sun, S.L.: ‘Multi-sensor optimal information fusion Kalman filter with application’, Aerosp. Sci. Technol., 2004, 8, (1), pp. 5762 (doi: 10.1016/j.ast.2003.08.003).
    45. 45)
      • 45. Sun, S.L., Deng, Z.L.: ‘Multi-sensor optimal information fusion Kalman filter’, Automatica, 2004, 40, (6), pp. 10171023 (doi: 10.1016/j.automatica.2004.01.014).
    46. 46)
      • 46. Sun, S.L.: ‘Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor’, Automatica, 2004, 40, (8), pp. 14471453 (doi: 10.1016/j.automatica.2004.03.012).
    47. 47)
      • 47. Sun, S.L.: ‘Multisensor optimal information fusion input white noise deconvolution estimators’, IEEE Trans. Syst. Man Cybern., 2004, 34, (4), pp. 18861893 (doi: 10.1109/TSMCB.2004.830349).
    48. 48)
      • 48. Barooah1, P., Russell, W.J., Hespanha, J.P.: ‘Approximate distributed Kalman filtering for cooperative multi-agent localization’. Proc. Sixth IEEE Int. Conf. on Distributed Computing in Sensor Syst., DCOSS’10, Santa Barbara, CA, 2010, pp. 102115.
    49. 49)
      • 49. Alriksson, P., Rantzer, A.: ‘Distributed Kalman filtering using weighted averaging’. 17th Int. Symp. on Mathematical Theory of Networks and Syst. (MTNS), 2006.
    50. 50)
      • 50. Alriksson, P., Rantzer, A.: ‘Experimental evaluation of a distributed Kalman filter algorithm’. 46th IEEE Conf. on Decision and Control, December 2007, pp. 54995504.
    51. 51)
      • 51. Ogren, P., Fiorelli, E., Leonard, N.E.: ‘Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed GMM approximation for multiple targets localization and tracking in wireless sensor networks’. 4th Int. Symp. on Information Processing in Sensor Networks, April 2005.
    52. 52)
      • 52. Coates, M.J., Oreshkin, B.N.: ‘Asynchronous distributed particle filter via decentralized evaluation of Gaussian products’. Proc. ISIF Int. Conf. Inf. Fusion, 2010.
    53. 53)
      • 53. Wang, D., Niu, K., He, Z., Tian, B.: ‘A novel OFDM channel estimation method based On Kalman filtering and distributed compressed sensing’, IEEE 21st Int. Symp. on Personal Indoor and Mobile Radio Communications, 2010, pp. 10801090.
    54. 54)
      • 54. Alriksson, P., Rantzer, A.: ‘Distributed Kalman filtering using weighted averaging’. Proc. 17th Int. Symp. on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 2006.
    55. 55)
      • 55. Bickson, D., Shental, O., Dolev, D.: ‘Distributed Kalman filter via Gaussian belief propagation’. Forty-Sixth Annual Allerton Conf., Allerton House, UIUC, Illinois, USA, 23–26 September, 2008, pp. 628635.
    56. 56)
      • 56. Schwarzenberg, G.F., Mayer, U., Ruiter, N.V., Hanebeck, U.D.: ‘3D reflectivity reconstruction by Means of spatially distributed Kalman Filters’. Proc. IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent System, Seoul, Korea, 20–22 August, 2008, pp. 384391.
    57. 57)
      • 57. Kirti, S., Scaglione, A.: ‘Scalable distributed Kalman filtering through consensus’, ICASSP2008, pp. 27252728.
    58. 58)
      • 58. Saber, O., , R.: ‘Distributed Kalman filter with embedded consensus filters’. Proc. 44th IEEE Conf. on Decision and Control, December 2005, pp. 81798184.
    59. 59)
      • 59. Spanos, D.P., Saber, O., , R., Murray, R.: ‘Approximate distributed Kalman filtering in sensor networks with quantifiable performance’. Proc. Fourth Int. Symp. on Information Processing in Sensor Networks, 2005, pp. 133139.
    60. 60)
      • 60. Msechu, E.J., Roumeliotist, S.I., Ribeiro, A., Giannakis, G.B.: ‘Distributed iteratively quantized Kalman filtering for Wireless sensor networks’, pp. 646650.
    61. 61)
      • 61. Schizas, I.D., Giannakis, G.B., Roumeliotis, S.I., Ribeiro, A.: ‘Anytime optimal distributed Kalman filtering and smoothing’, SSP2007, pp. 368372.
    62. 62)
      • 62. Franco, E., Saber, O., , R., Parisini, T., Polycarpou, M.M.: ‘Distributed fault diagnosis using sensor networks and consensus-based filters’. Proc. 45th IEEE Conf. on Decision and Control, Manchester Grand Hyatt Hotel, San Diego, CA, USA, 13–15 December, 2006, pp. 386391.
    63. 63)
      • 63. Ribeiro, A., Giannakis, G.B., Roumeliotis, S.I.: ‘SOI-KF: distributed Kalman filtering with low-cost communications Using the sign of innovations’, IEEE Trans. Signal Process., 2006, 54, (12), pp. 47824795 (doi: 10.1109/TSP.2006.882059).
    64. 64)
      • 64. Ribeiro, A., Giannakis, G.B., Roumeliotis, S.I.: ‘SOI-KF: distributed Kalman filtering with low-cost communications using the sign of innovations’. Proc. Int. Conf. Acoustics Speech, Signal Processing, Toulouse, France, 14–19 May, 2006, pp. IV-153IV-156.
    65. 65)
      • 65. Spanos, D.P., Olfati-Saber, R., Murray, R.M.: ‘Approximate distributed Kalman filtering in sensor networks with quantifiable performance’. Fourth Int. Symp. on Information Processing in Sensor NetworksApril 2005, pp. 133139.
    66. 66)
      • 66. Abdelgawad, A., Bayoumi, M.: ‘Low-power distributed Kalman filter for Wireless Sensor Networks’, Hindawi Publ. Corp. EURASIP J. Embedded Syst., Volume 2011, Article ID 693150, 11 pp; DOI:10.1155/2011/693150.
    67. 67)
      • 67. Cortes, J.: ‘Distributed Kriged Kalman filter for spatial estimation’, IEEE Trans. Autom. Control, 54, (12), December2009, pp. 28162827 (doi: 10.1109/TAC.2009.2034192).
    68. 68)
      • 68. Gao, Y., Tao, G.L., Deng, Z.L.: ‘Decoupled distributed Kalman fuser for descriptor systems’, Signal Process., 2008, 88, pp. 12611270 (doi: 10.1016/j.sigpro.2007.11.016).
    69. 69)
      • 69. Lendeka, Z., Babuska, R., Schuttera, B.: ‘Distributed Kalman filtering for cascaded systems’, Eng. Appl. Artif. Intell., 2008, 21, pp. 457469 (doi: 10.1016/j.engappai.2007.05.002).
    70. 70)
      • 70. Song, E., Zhu, Y., Zhou, J., Sichuan, C.: ‘The optimality of Kalman filtering fusion with cross-correlated sensor Noises’. 43rd IEEE Conf. on Decision and Control, 610064, P.R. China, 14–17 December, 2004, Atlantis, Paradise Island, Bahamas, pp. 46374642.
    71. 71)
      • 71. Zhu, Y.M., You, Z.S., Zhao, J., Zhang, K.S., Li, R. X.: ‘The optimality of the distributed Kalman filter with feedback’, Automatica, 2001, 37, pp. 14891493 (doi: 10.1016/S0005-1098(01)00074-7).
    72. 72)
      • 72. Kirti, S., Scaglione, A.: ‘Scalable distributed Kalman filtering through consensus’. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'08), March–April 2008, pp. 27252728.
    73. 73)
      • 73. Khan, U.A., Moura, J.M.F.: ‘Model distribution for distributed Kalman filters: a graph theoretic approach’. Proc. 41st Asilomar Conf. Signals, System and Computers (ACSSC'07), November 2007, pp. 611615.
    74. 74)
      • 74. Azizi, S.M., Khorasani, K.: ‘A distributed Kalman filter for actuator fault estimation of deep space formation flying satellites’. Proc. Third IEEE Int. System Conf., March 2009, pp. 354359.
    75. 75)
      • 75. Bai, H., Freeman, R.A., Lynch, K.M.: ‘Distributed Kalman filtering using the internal model average consensus estimator’. Proc. American Control Conf., O’Farrell Street, San Francisco, CA, USA, 29 June– 1 July, 2011, pp. 15001505.
    76. 76)
      • 76. Spanos, D.P., Saber, S. R., Murray, R.M.: ‘Distributed Kalman filtering in sensor networks with quantifiable performance’. The Fourth Int. Symp. on Information Processing for Sensor Networks (IPSN '05), 2005, California, USA, pp. 133139.
    77. 77)
      • 77. Zhu, Y., You, Z., Zhao, J., Zhang, K., Li, R. X.: ‘The optimality for the distributed Kalman filtering Fusion’, Automatica, 37, (9), 2001, pp. 14891493 (doi: 10.1016/S0005-1098(01)00074-7).
    78. 78)
      • 78. Deng, Z.L., Ma, J.W., Gao, Y.: ‘Two-sensor self-tuning information fusion Kalman filter’, Sci. Technol. Eng., 2003, 3, pp. 321324.
    79. 79)
      • 79. Sun, S.L.: ‘Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor’, Automatica, 2004, 40, (8), pp. 14471453 (doi: 10.1016/j.automatica.2004.03.012).
    80. 80)
      • 80. Spanos, D.P., Saber, O. R., Murray, R.M.: ‘Distributed Kalman filtering in sensor networks with quantifiable performance’. 2005 Fourth Int. Symp. on Information Processing in Sensor Networks (IPSN), 2005, pp. 133139.
    81. 81)
      • 81. Deutscher, J., Harkort, C. C.: ‘Parametric approach to the decoupling of linear distributed-parameter systems’, IET Control Theory Appl., 2010, 4, (12), pp. 28552866 (doi: 10.1049/iet-cta.2009.0286).
    82. 82)
      • 82. Smith, R.S., Hadaegh, F.Y.: ‘Distributed estimation, communication and control for deep space formations’, IET Control Theory Appl., 2007, 1, (2), pp. 445451 (doi: 10.1049/iet-cta:20050460).
    83. 83)
      • 83. Azizi, S.M., Tousi, M.M., Khorasani, K.: ‘Multi-agent methodology for distributed and cooperative supervisory estimation subject to unreliable information’, IET Control Theory Applic., 2011, 5, (4), pp. 606621 (doi: 10.1049/iet-cta.2010.0320).
    84. 84)
      • 84. Yang, S., Zhao, Q.: ‘Probability distribution characterization of fault detection delays and false alarms’, IET Control Theory Applic., 2012, 6, (7), pp. 953962 (doi: 10.1049/iet-cta.2011.0430).
    85. 85)
      • 85. Zhang, W., Huang, X., Wang, M.: ‘Out-of-sequence measurement algorithm based on Gaussian particle filter’, Inf. Technol. J., 2010, 9, (5), pp. 942948 (doi: 10.3923/itj.2010.942.948).
    86. 86)
      • 86. Saber, O., , R.Distributed Kalman filtering for sensor networks’. 46th IEEE Conf. on Decision and Control, December 2007, pp. 54925498.
    87. 87)
      • 87. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: ‘Distributed Kalman filtering using consensus strategies’. 46th IEEE Conf. on Decision and Control, December 2007, pp. 54865491.
    88. 88)
      • 88. Gu, D., Junxi, S., Zhen, H., Hongzuo, L.: ‘Consensus based distributed particle filter in sensor networks’. IEEE Int. Conf. on Information and Automation, 2008, pp. 302307.
    89. 89)
      • 89. Li, S. S., Li, Z. D.: ‘Multi-sensor optimal information fusion Kalman filter’, Automatica, 40, 2004, pp. 10171023 (doi: 10.1016/j.automatica.2004.01.014).
    90. 90)
      • 90. Ling, S., Karl, H.J., Richard, M.M.: ‘Kalman filtering with uncertain process and measurement noise covariances with application to state estimation in sensor networks’. 16th IEEE Int. Conf. on Control Applications, Part of IEEE Multi-conference on System and Control, Singapore, 1–3 October, 2007, pp. 10311036.
    91. 91)
      • 91. Chang, K.C.: ‘Evaluating hierarchical fusion with information matrix filter’. Proc. Third Int. Information Fusion Conf., Paris, France ISIF, 2000.
    92. 92)
      • 92. Yang, W., Wendong, X., Lihua, X.: ‘Diffusion-based EM algorithm for distributed estimation of Gaussian mixtures in wireless sensor networks, Sensors, 2011, 11, pp. 62976316 (doi: 10.3390/s110606297).
    93. 93)
      • 93. Cattivelli, F., Sayed, A.H.: ‘Diffusion strategies for distributed Kalman filtering and smoothing’, IEEE Trans. Autom. Control, 2010, 55, pp. 20692084 (doi: 10.1109/TAC.2010.2042987).
    94. 94)
      • 94. Cattivelli, F.S., Sayed, A.H.: ‘Diffusion strategies for distributed Kalman filtering and smoothing’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 20692084 (doi: 10.1109/TAC.2010.2042987).
    95. 95)
      • 95. Gu, D.: ‘Distributed EM algorithm for Gaussian mixtures in sensor networks’, IEEE Trans. Neural Netw., 2008, 19, (7), pp. 11541166 (doi: 10.1109/TNN.2008.915110).
    96. 96)
      • 96. Saber, O., , R.: ‘Distributed Kalman filter with embedded consensus filters’. Proc. 44th IEEE Conf. on Decision Control, 12–15 December, 2005, pp. 81798184.
    97. 97)
      • 97. Cattivelli, F., Sayed, A.H.: ‘Diffusion distributed Kalman filtering with adaptive Weights’. 2009 Conf. Record of the Forty-Third Asilomar Conf. Signals, System and Computers, 1–4 November, 2009, pp. 908912.
    98. 98)
      • 98. Cattivelli, F.S., Lopes, C.G., Sayed, A.H.: ‘Diffusion strategies for distributed Kalman filtering: formulation and performance analysis’. Proc. Cognitive Information Processing, Santorini, Greece, June 2008.
    99. 99)
      • 99. Cattivelli, F.S., Sayed, A.H.: ‘Diffusion mechanisms for fixed-point distributed Kalman smoothing’. Proc. EUSIPCO, Lausanne, Switzerland, August 2008, [CD ROM].
    100. 100)
      • 100. Schizas, I., Roumeliotis, S.I., Giannakis, G.B., Ribeiro, A.: ‘Anytime optimal distributed Kalman filtering and smoothing’. Proc. IEEE Workshop on Statistical Signal Processing, Madison, WI, August 2007, pp. 368372.
    101. 101)
      • 101. Khan, U.A., Moura, J.M.F.: ‘Distributing the Kalman filter for large scale systems’, IEEE Trans. Signal Process., 2008, 56, (10), Part 1, pp. 49194935 (doi: 10.1109/TSP.2008.927480).
    102. 102)
      • 102. Shalom, B. Y.: ‘Update with out-of-sequence measurements in tracking: exact solution’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (3), pp. 769778 (doi: 10.1109/TAES.2002.1039398).
    103. 103)
      • 103. Shalom, B., , Y., Chen, H., Mallick, M.: ‘One-step solution for the multistep out-of-sequence-measurement problem in tracking’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (1), pp. 2737 (doi: 10.1109/TAES.2004.1292140).
    104. 104)
      • 104. Zhang, K., Rong-Li, X., Zhu, Y.: ‘Optimal update with out-of-sequence measurements’, IEEE Trans. Signal Process., 2005, 53, (6), pp. 19922004 (doi: 10.1109/TSP.2005.847830).
    105. 105)
      • 105. Maskell, S.R., Everitt, R.G., Wright, R., Briers, M.: ‘Multi-target out-of-sequence data association: tracking using graphical models’, Inf. Fusion, 2006, 7, (4), pp. 434447 (doi: 10.1016/j.inffus.2005.07.001).
    106. 106)
      • 106. Shen, X., Zhu, Y., Song, E., Luo, Y.: ‘Optimal centralized update with multiple local out-of-sequence measurements’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 15511562 (doi: 10.1109/TSP.2009.2012885).
    107. 107)
      • 107. Zhang, S., Shalom, B., , Y., Watson, G.: ‘Tracking with multisensor out-of-sequence measurements with residual biases’. Proc. ISIF Int. Conf. Inf. Fusion, Edinburgh, UK, July 2010.
    108. 108)
      • 108. Shalom, B., , Y., Chen, H.: ‘Removal of out-of-sequence measurements from tracks’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, pp. 612619 (doi: 10.1109/TAES.2009.5089544).
    109. 109)
      • 109. Shen, X., Zhu, Y., Song, E., Luo, Y.: ‘Optimal centralized update With multiple local out-of-sequence measurements’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 15511562 (doi: 10.1109/TSP.2009.2012885).
    110. 110)
      • 110. Shen, X.J., Luo, Y.T., Zhu, Y.Z., et al: ‘Globally optimal flight path update with adding or removing out-of-sequence measurements’, Automatica, 2010, 46, pp. 14371442 (doi: 10.1016/j.automatica.2010.06.023).
    111. 111)
      • 111. Zhang, K.S., Li, R., , X., Zhu, Y.M.: ‘Optimal update with out-of-sequence observations for distributed filtering’. Proc. 2002 Int. Conf. on Information Fusion, Annapolis, MD, USA, July 2002, pp. 15191526.
    112. 112)
      • 112. Keshu, Z., Li, R., , X., Yunmin, Z.: ‘Optimal update with out-of-sequence measurements for distributed filtering’, ISIF2002, pp. 15191526.
    113. 113)
      • 113. Shalom, B., , Y.: ‘Update with out-of-sequence measurements in tracking: exact solution’. Proc. 2000 SPIE Conf. Signal and Data Processing of Small Targets, vol. 4048, April 2000.
    114. 114)
      • 114. Thomopoulos, S., Zhang, L.: ‘Distributed filtering with random sampling and delay’. Proc. 27th IEEE Conf. on Decision and Control, Austin, TX, December 1988.
    115. 115)
      • 115. Zhang, K., Li, X.R., Zhu, Y.: ‘Optimal update with out-of-sequence measurements’, IEEE Trans. Signal Process., 2005, 53, (6), pp. 19922004 (doi: 10.1109/TSP.2005.847830).
    116. 116)
      • 116. Shalom, B., , Y.: ‘Update with out-Of-sequence measurements in tracking: exact solution’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38(3), pp. 769777 (doi: 10.1109/TAES.2002.1039398).
    117. 117)
      • 117. Shalom, B., , Y., Mallick, M., Chen, H., Washburn, R.: ‘One-step solution for the general out-of-sequence measurements problem in tracking’. Proc. 2002 IEEE Aerospace Conf., Big Sky, MT, March 2002, pp. 15511559.
    118. 118)
      • 118. Challa, S., Evans, R., Legg, J.: ‘A fixed Lag smoothing framework for OOSI problems’, Commun. Inf. Syst., 2002, 2, (4), pp. 327350.
    119. 119)
      • 119. Challa, S., Evans, R., Wang, X.: ‘A Bayesian solution to out-Of-sequence measurements problem and its approximations’, Inf. Fusion, 2003, 4, (3), pp. 185199 (doi: 10.1016/S1566-2535(03)00037-X).
    120. 120)
      • 120. Challa, S., Wang, X., Legg, J.: ‘Track-to-track fusion using out-of-sequence tracks’. Proc. Int. Conf. Inf. Fusion, Annapolis, MD, July 2002, pp. 919926.
    121. 121)
      • 121. Mallick, M., Krant, S.J., Shalom, B. Y.: ‘Multi-sensor multi-target tracking using out-of-sequence measurements’. Proc. Int. Conf. Inf. Fusion, Annapolis, MD, July 2002, pp. 135142.
    122. 122)
      • 122. Orton, M., Marrs, A.: ‘A Bayesian approach to multi-target tracking data fusion with out-of-sequence measurements’, Proc. IEEE, Algorithms and Applications (Ref. No. 2001/174), IEE, 16–17 October, 2001, pp. 15/115/5.
    123. 123)
      • 123. Thomopoulos, S., Zhang, L.: ‘Distributed filtering with random sampling and delay’. Proc. 27th IEEE Conf. on Decision Control, Austin, TX, December 1988, 3, pp. 23482353.
    124. 124)
      • 124. Zhang, K.S., Li, R., , X., Zhu, Y.M.: ‘Optimal update with out-of-sequence measurements for distributed filtering’. Proc. Int. Conf. Inf. Fusion, Annapolis, MD, July 2002, pp. 15191526.
    125. 125)
      • 125. Shen, X., Zhu, Y., You, Z.: ‘Optimal flight path update with adding or removing out-of-sequence measurements’. Int. Conf. on Intelligent Control and Information Processing, 13–15 August, 2010, Dalian, China, pp. 427432.
    126. 126)
      • 126. Challa, S., Evans, R.J., Wang, X.: ‘Track-to-track fusion using out-of-sequence tracks’. Proc. 5th Int. Conf. on Information Fusion, Annapolis, MD, pp. 919926, 2002.
    127. 127)
      • 127. Challa, S., Evans, R.J., Wang, X., Legg, J.: ‘A fixed lag smoothing framework for OOSM problems’, Commun. Inf. Syst., 2002, 2, (4), 327350.
    128. 128)
      • 128. Rothrock, R.: ‘The need to remove out-of-sequence measurements’, Presented at the Tracking and CID Alternatives Identification and Evaluation Team (TCAIET) Meeting, Arlington, VA, 2006.
    129. 129)
      • 129. Shen, X.J., Zhu, Y.M., Song, E.B., Luo, Y.T.: ‘Globally optimal distributed Kalman fusion with local out-of-sequence-measurement updates’, IEEE Trans. Autom. Control, 2009, 54, pp. 19281934 (doi: 10.1109/TAC.2009.2023777).
    130. 130)
      • 130. Zhou, W., Li, L., Chen, G., Yu, A.: ‘Optimality analysis of one-step OOSM filtering algorithms in target tracking’, Sci. China F, Inf. Sci., 2007, 50, (2), pp. 170187 (doi: 10.1007/s11432-007-0012-y).
    131. 131)
      • 131. Challa, S., Evans, R.J., Wang, X.: ‘Target tracking in clutter using time-delayed out-of-sequence measurements’. Proc. Defense Applications of Signal Processing (DASP), September 2001.
    132. 132)
      • 132. Wang, D., Zhu, Y., Shen, X.: ‘Distributed multi-sensor estimation fusion with out-of-sequence measurements’. The 2008 Int. Conf. Embedded Software and Systems (ICESS 2008), pp. 390395.
    133. 133)
      • 133. Shalom, B.Y.: ‘Update with out-of-sequence measurements in tracking: exact solution’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (3), pp. 769778 (doi: 10.1109/TAES.2002.1039398).
    134. 134)
      • 134. Portas, E.B., Orozco, J.A.L., Cruz, J.M.: ‘Multisensor out-of-sequence data fusion for estimating the State of dynamic systems’, 2007 Information, Decision and Control, pp. 348353.
    135. 135)
      • 135. Shalom, B., , Y.: ‘Update with out-of-Sequence measurements in tracking: exact solution’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (3), pp. 769778 (doi: 10.1109/TAES.2002.1039398).
    136. 136)
      • 136. Shalom, B., , Y., Mallick, M., Chen, H., Washburn, R.: ‘One step solution for the general out-of-sequence measurement problem in tracking’. Proc. IEEE Aerospace Conf. 2002, pp. 19.
    137. 137)
      • 137. Challa, S., Evans, R., Wang, X.: ‘A bayesian solution and its approximation to out-of-sequence measurement problems’, Information Fusion, 2003, 4, pp. 185199 (doi: 10.1016/S1566-2535(03)00037-X).
    138. 138)
      • 138. Zhang, K., Li, R., , X., Chen, Y.: ‘Optimal update with out-of-sequence measurements for distributed filtering’. Proc. Fifth Int. Conf. of Information Fusion (ISIF 2002), 2002, pp. 15191526.
    139. 139)
      • 139. Zhang, K., Li, R., , X., Chen, Y.: ‘Multi-sensor multi-tracking with out-of-sequence measurements’. Proc. ISIF, 2003, pp. 672679.
    140. 140)
      • 140. Orton, M., Marrs, A.: ‘A Bayesian approach to multi-target tracking and data fusion with out-of-sequence measurements’. Proc. IEE Int. Workshop on Target Tracking Algorithms and Applications, 2001, pp. v1v15.
    141. 141)
      • 141. Mookerjee, P., Reifler, F.: ‘Application of reduced state estimation to multisensor fusion with out-of-sequence measurements’. Proc. IEEE Radar Conf., 2004, pp. 111116.
    142. 142)
      • 142. Rothrock, R.: ‘The need to remove out-of-sequence measurements’. Presented at the Tracking and CID Alternatives Identification and Evaluation Team (TCAIET) Meeting, Arlington, VA, 2006.
    143. 143)
      • 143. Mallick, M., Kirubarajan, T., Arulampalam, S.: ‘Out-of-sequence measurement processing for tracking ground target using particle filters’. Proc. IEEE Aerospace Conf., Big Sky, MT, USA, vol. 4, March 2002, pp. 18091818.
    144. 144)
      • 144. Mallick, M., Marrs, A.: ‘Comparison of the KF and particle filter based out-of-sequence measurement filtering algorithms’. Proc. Sixth Int. Conf. Information Fusion, Cairns, Australia, vol. 1, July 2003, pp. 422429.
    145. 145)
      • 145. Aleksandar, D., Kun, Q.: ‘Decentralized random-field estimation for sensor networks using quantized spatially correlated data and fusion-center feedback’, IEEE Trans. Signal Process., 2008, 56, (12), pp. 60696085 (doi: 10.1109/TSP.2008.2005753).
    146. 146)
      • 146. Dogandzic, A., Qiu, K.: ‘Estimating a random field in sensor networks using quantized spatially correlated data and fusion-center feedback’. Proc. 42nd Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, October 2008, pp. 19431947.
    147. 147)
      • 147. Yoon, J.H., Shin, V.: ‘Comparison analysis of distributed receding horizon filters for linear discrete-time systems with uncertainties’, Int. J. Syst. Control, 1, (2), 2010, pp. 4856.
    148. 148)
      • 148. Duan, Z., Rong-Li, X.: ‘Optimal distributed estimation fusion with transformed Data’. 2008 11th Int. Conf. on Information Fusion, 30 June– 3-July, 2008, pp. 12911297.
    149. 149)
      • 149. Duan, Z., Li, R., , X.: ‘The optimality of a class of distributed estimation fusion algorithm’. The 11th Int. Conf. on Information Fusion, 2008, pp. 12851290.
    150. 150)
      • 150. Xu, J., Song, E., Luo, Y., Zhu, Y.: ‘Optimal distributed Kalman filtering fusion algorithm Without Invertibility of estimation error and sensor noise covariances’, IEEE Signal Process. Lett., 2012, 19, (1), pp. 5558 (doi: 10.1109/LSP.2011.2177495).
    151. 151)
      • 151. Shen, X., Zhu, Y., Song, E., Luo, Y.: ‘Minimizing Euclidean state estimation error for linear Uncertain dynamic systems based on multi-sensor and multi-algorithm fusion’, IEEE Trans. Inf. Theory, 2011, 57, (10), pp. 71317146 (doi: 10.1109/TIT.2011.2165789).
    152. 152)
      • 152. Berg, T.M., Durrant-Whyte, H.F.: ‘Model distribution in decentralized multi-sensor data fusion’, Am. Control Conf., 1991, pp. 22922293.
    153. 153)
      • 153. Qiang, G., Song-nian, Y.: ‘Distributed multisensor data fusion based on Kalman filtering and the parallel implementation’, J. Shanghai Univ. (Engl. Edn.), 2006, 10, (2), pp. 118122, Article ID: 1007-6417(2006)02-0118-05 (doi: 10.1007/s11741-006-0026-5).
    154. 154)
      • 154. Rao, B.S., Whyte, D-, H.F.: ‘Fully decentralized algorithm for multisensor Kalman filtering’, IEE Proc. Control Theory Appl., 1991, 138, pp. 413420 (doi: 10.1049/ip-d.1991.0057).
    155. 155)
      • 155. Sun, S.: ‘Optimal multi-sensor Kalman smoothing fusion for discrete multichannel ARMA signals’, J. Control Theory Appl., 2005, 2, pp. 168172 (doi: 10.1007/s11768-005-0011-8).
    156. 156)
      • 156. Sun, S.: ‘Multi-sensor optimal information fusion Kalman filter for discrete multichannel ARMA signals’. Proc. 2003 IEEE Int. Symp. on Intelligent Control (Institute of Electrical and Electronic Engineers Inc., Chicago, 2003), Houston, pp. 377382.
    157. 157)
      • 157. Sun, S., Deng, Z.: ‘Multi-sensor optimal information fusion Kalman filter’, Automatica, 2004, 40, (6), pp. 10171023 (doi: 10.1016/j.automatica.2004.01.014).
    158. 158)
      • 158. Li, S., , S.: ‘Distributed optimal component fusion deconvolution filtering’, Signal Process., 2007, 87, pp. 202209 (doi: 10.1016/j.sigpro.2006.08.011).
    159. 159)
      • 159. Deng, Z.L., Qi, R.B.: ‘Multi-sensor information fusion suboptimal steady-state Kalman filter’, Chinese Sci. Abstr., 2000, 6, (2), pp. 183184.
    160. 160)
      • 160. Qiang, G., Harris, C.J.: ‘Comparison of two measurement fusion methods for Kalman filter-based multisensor data fusion’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (1), 273280 (doi: 10.1109/7.913685).
    161. 161)
      • 161. Willner, D., Chang, C.B., Dunn, K.P.: ‘Kalman filter algorithm for a multisensor system’. Proc. IEEE Conf. Decision and Control, 1976.
    162. 162)
      • 162. Han, C.Z., Wang, J., Li, R. X.: ‘Fused state estimation of linear continuous-time system with multi-sensor asynchronous measurements’. Proc. 2001 Int. Conf. Information Fusion, Montreal, QC, Canada, August 2001, pp. FrB1.3FrB1.9.
    163. 163)
      • 163. Li, R., , X., Zhu, M., , Y., Wang, J., Han, C. Z.. ‘Optimal linear estimation fusion part I: unified fusion rules’, IEEE. Trans. Inf. Theory, 2003, 49, (9), pp. 21922208 (doi: 10.1109/TIT.2003.815774).
    164. 164)
      • 164. Li, R., , X., Zhu, Y.M., Han, C.Z.: ‘Unified optimal linear estimation fusion Part I: unified models and fusion rules’. Proc. 2000 Int. Conf. on Information Fusion, Paris, France, July 2000, pp. MoC2.10MoC2.17.
    165. 165)
      • 165. Li, R., , X., Wang, J.: ‘Unified optimal linear estimation fusion Part II: discussions and examples’. Proc. 2000 Int. Conf. on Information Fusion, Paris, France, July 2000, pp. MoC2.18MoC2.25.
    166. 166)
      • 166. Li, R., , X., Zhang, P.: ‘Optimal linear estimation fusion Part III: cross-correlation of local estimation errors’. Proc. 2001 Int. Conf. on Information Fusion, Montreal, QC, Canada, August 2001, pp. WeB1.11WeB1.18.
    167. 167)
      • 167. Li, R., , X., Zhang, K.-S.: ‘Optimal linear estimation fusion Part IV: optimality and efficiency of distributed fusion’. Proc. 2001 Int. Conf. on Information Fusion, Montreal, QC, Canada, August 2001, pp. WeB1.19WeB1.26.
    168. 168)
      • 168. Li, R., , X., Zhang, K.-S., Zhao, J., Zhu, Y.-M.: ‘Optimal linear estimation fusion Part V: relationships’. Proc. 2002 Int. Conf. on Information Fusion, Annapolis, MD, USA, July 2002, pp. 497504.
    169. 169)
      • 169. Zhang, K.-S., Li, R., , X., Zhang, P., Li, H.-F.: ‘Optimal linear estimation fusion Part VI: sensor data compression’. Proc. 2003 Int. Conf. on Information Fusion, Cairns, Australia, July 2003.
    170. 170)
      • 170. Li, R., , X.: ‘Optimal linear estimation fusion Part VII: dynamic systems’, Int. Conf. on Information Fusion, Cairns, Australia, July 2003, pp. 455462.
    171. 171)
      • 171. Hong, Z.Q., Hong, Y.Z., Hong, J.: ‘Fusion algorithm of correlated local estimates’, Aerosp. Sci. Technol., 2004, 8, pp. 619626 (doi: 10.1016/j.ast.2004.06.009).
    172. 172)
      • 172. Sun, S.-L.: ‘Multi-sensor optimal information fusion Kalman filters with applications’, Aerosp. Sci. Technol., 2000, 8, pp. 5762 (doi: 10.1016/j.ast.2003.08.003).
    173. 173)
      • 173. Yunmin, Z., Xianrong, L., Li, R., , X., Juan, Z.: ‘Linear minimum variance estimation fusion’, Sci. China F, Inf. Sci., 2004, 47, (6), pp. 728740 (doi: 10.1360/03yf0087).
    174. 174)
      • 174. Sun, S.L.: ‘Multi-sensor optimal information fusion Kalman filter with applications’, Aerosp. Sci. Technol., 2004, 8, (1), pp. 5762 (doi: 10.1016/j.ast.2003.08.003).
    175. 175)
      • 175. Sun, S.L., Deng, Z.L.: ‘Multisensor information fusion Kalman filter weighted by scalars for systems with colored measurement noises’, J. Dyn. Syst. Meas. Control, 2005, 127, (12), pp. 663667 (doi: 10.1115/1.2101844).
    176. 176)
      • 176. Xiangdong, Q., Kuochu, C.: ‘Information matrix fusion with feedback versus number of sensors’, CiteSeerX, 10.1.1.63.6672.
    177. 177)
      • 177. Li, R., , X.: ‘Optimal linear estimation fusion for multi-sensor dynamic Systems’. Proc. Workshop on Multiple Hypothesis Tracking – A Tribute to Sam Blackman, San Diego, CA, USA, May 2003.
    178. 178)
      • 178. Zhang, K.-S., Li, R. X., Zhu, Y.-M.: ‘Optimal update with out-of-sequence observations for distributed filtering’, IEEE Trans. Signal Process., 2005, 53, (6), pp. 19922004 (doi: 10.1109/TSP.2005.847830).
    179. 179)
      • 179. Zhu, Y., Gana Yu Li, R. X.: ‘Multisensor statistical interval estimation fusion’. Proc. 2002 SPIE Conf. on Sensor Fusion: Architectures, Algorithms, and Applications VI, vol. 47, Orlando, FL, April 2002, pp. 3136.
    180. 180)
      • 180. Chang, K., Zhi, T., Saha, R.: ‘Performance evaluation of track fusion with information matrix filter’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (2), pp. 455466 (doi: 10.1109/TAES.2002.1008979).
    181. 181)
      • 181. Chang, K.C., Tian, Z., Mori, S.: ‘Performance evaluation for MAP state estimate fusion’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (2), pp. 706714 (doi: 10.1109/TAES.2004.1310015).
    182. 182)
      • 182. Noack, B., Lyons, D., Nagel, M., Hanebeck, U.D.: ‘Non-linear information filtering for distributed multi-sensor data fusion’. 2011 American Control Conf. O’Farrell Street, San Francisco, CA, USA, 29 June–1 July, 2011, pp. 48464852.
    183. 183)
      • 183. Teng, Z., Jing, M., Shuli, S.: ‘Distributed fusion filter for discrete-time stochastic systems with Uncertain observation and correlated noises’. 2010 Eighth IEEE Int. Conf. on Control and Automation, Xiamen, China, 9–11 June, 2010, pp. 704708.
    184. 184)
      • 184. Sun, S.L.: ‘Multi-sensor optimal information fusion Kalman filter with application’, Aerosp. Sci. Technol., 2004, 8, (1), pp. 5762 (doi: 10.1016/j.ast.2003.08.003).
    185. 185)
      • 185. Sun, S.L., Deng, Z.L.: ‘Multi-sensor optimal information fusion Kalman filter’, Automatica, 2004, 40, (6), pp. 10171023 (doi: 10.1016/j.automatica.2004.01.014).
    186. 186)
      • 186. Sun, S.L.: ‘Multi-sensor optimal information fusion input white noise de-convolution estimators’, IEEE Trans. Syst. Man Cybern., 2004, 34, (4), pp. 18861893 (doi: 10.1109/TSMCB.2004.830349).
    187. 187)
      • 187. Gao, Y., Ran, C.J., Deng, Z.L.: ‘Weighted measurement fusion Kalman filter with correlated measurement noise and its global optimality’. Proc. Int. Colloquium Information Fusion 2007, Xian, China, 22–25 August, 2007, pp. 195200.
    188. 188)
      • 188. Wen, C.L., Ge, Q.B., Feng, X.L.: ‘Optimal recursive fusion estimator for asynchronous system’. Proc. 7th Asian Control Conf., Hong Kong, China, 27–29 August, 2009, pp. 148153.
    189. 189)
      • 189. Zhu, B., Sastry, S.: ‘Data fusion assurance for the Kalman filter in Uncertain networks’. The Fourth Int. Conf. on Information Assurance and Security, pp. 115119.
    190. 190)
      • 190. Sun, S.L.: ‘Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor’, Automatica, 2004, 40, (8), pp. 14471453 (doi: 10.1016/j.automatica.2004.03.012).
    191. 191)
      • 191. Sun, S.L.: ‘Multi-sensor optimal information fusion input white noise deconvolution estimators’, IEEE Trans. Syst. Man Cybern., 2004, 34, (4), pp. 18861893 (doi: 10.1109/TSMCB.2004.830349).
    192. 192)
      • 192. Sun, S., Zhang, C.: ‘Optimal information fusion distributed smoother for discrete multichannel ARMA signals’, IEE Proc., Vis. Image Signal Process., 2005, 152, (5), pp. 583589 (doi: 10.1049/ip-vis:20041260).
    193. 193)
      • 193. Zhu, Y., Song, E., Zhou, J., You, Z.: ‘Optimal dimensionality reduction of sensor data in multi-sensor estimation fusion’, IEEE Trans. Signal Process., 2005, 53, (5), pp. 16311639 (doi: 10.1109/TSP.2005.845429).
    194. 194)
      • 194. Deng, Z., Qi, R.: ‘Multi-sensor information fusion sub-optimal steady-state Kalman filter’, Chinese Sci. Abstr., 2000, 6, (2), pp. 183184.
    195. 195)
      • 195. Gan, Q., Harris, C.J.: ‘Comparison of two measurement fusion methods for Kalman-filter-Based multisensor data fusion’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (1), pp. 273280 (doi: 10.1109/7.913685).
    196. 196)
      • 196. Chang, K.C., Tian, Z., Saha, R.K.: ‘Performance evaluation of track fusion with information filter’. Proc. Int. Conf. on Multisource-Multisensor Information Fusion, July 1998, pp. 648655.
    197. 197)
      • 197. Saha, R.K., Chang, K.C.: ‘An efficient algorithm for multisensor track fusion’, IEEE Trans. Aerosp. Electron. Syst., 34, (1), 1998, pp. 200210 (doi: 10.1109/7.640278).
    198. 198)
      • 198. Saha, R.K.: ‘Track-to-track fusion with dissimilar sensors’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (3), pp. 10211029 (doi: 10.1109/7.532261).
    199. 199)
      • 199. Whyte, D., , H.F., Rao, B.Y.S., Hu, H.: ‘Toward a fully decentralized architecture for multi-sensor data fusion’, pp. 2/12/4.
    200. 200)
      • 200. Li, S., , S., Jing, M.: ‘Distributed reduced-order optimal fusion Kalman filters for stochastic singular systems’, Acta Autom. Sinica, 32, (2), 2006, pp. 286290.
    201. 201)
      • 201. Zhu, Y.M., You, Z.S., Zhao, J., et al: ‘The optimality for the distributed Kalman filter with feedback’, Automatica, 2001, 37, pp. 14891493 (doi: 10.1016/S0005-1098(01)00074-7).
    202. 202)
      • 202. Zhao, M.H., Zhu, Z.M., Meng, S., et al: ‘Suboptimal distributed Kalman filtering fusion with feedback’, J. Syst. Engg. Electron, 2005, 4, pp. 746749.
    203. 203)
      • 203. Chong, C.Y., Mori, S., Chang, K.C.: ‘Information fusion in distributed sensor networks’. Proc. American Control Conf., 1985, pp. 830835.
    204. 204)
      • 204. Chou, K.C., Willsky, A.S., Benveniste, A.: ‘Multiscale recursive estimation, data fusion, and regularization’, IEEE Trans. Autom. Control, 1994, 39, (3), pp. 464474 (doi: 10.1109/9.280746).
    205. 205)
      • 205. Ahmed, K.H., Massoud, A.M., Finney, S.J., Williams, B.W.: ‘Sensorless modified adaptive Kalman filter for current control of a three-phase inverter based distributed generation’, IEEE Int. Symp. Ind. Electron., 2008, 30 June– 2 July, pp. 15921597.
    206. 206)
      • 206. Mosquera, C., Jayaweera, S.K.: ‘Entangled Kalman filters for cooperative estimation’. Fifth IEEE SAM Sensor Array and Multichannel Signal Processing Workshop, 21–23 July, 2008, pp. 279283.
    207. 207)
      • 207. Saber, O., , R., Nils Sandell, F.: ‘Distributed tracking in sensor networks with limited sensing range’. 2008 American Control Conf., Westin Seattle Hotel, Seattle, Washington, USA, 11–13 June, 2008, pp. 31573162.
    208. 208)
      • 208. Schizas, I.D., Giannakis, G.B., Roumeliotis, S.I., Ribeiro, A.: ‘Consensus in ad hoc WSNs With noisy links Part II: distributed estimation and smoothing of random signals’, IEEE Trans. Signal Process., 2008, 56, (4), pp. 16501666 (doi: 10.1109/TSP.2007.908943).
    209. 209)
      • 209. Oh, S., Sastry, S.: ‘Distributed networked control system with lossy links: state estimation and stabilizing communication control’. Proc. 45th IEEE Conf. on Decision and Control, San Diego, CA, December 2006.
    210. 210)
      • 210. Oh, S., Shankar, S.: ‘Approximate estimation of distributed networked control systems’. Proc. 2007 American Control Conf., Marriott Marquis Hotel at Times Square, New York City, USA, 11–13 July, 2007, pp. 9971002.
    211. 211)
      • 211. Sheng, Y., Hu, X., Ramanathan, P.: ‘Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor networks’. Proc. Fourth Int. Symp. Inf. Process. Sensor Netw., Los Angeles, CA, April 2005, pp. 181188.
    212. 212)
      • 212. Sheng, Y., Hu, X., Ramanathan, P.: ‘Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor networks’. Fourth Int. Symp. on Information Processing in Sensor Networks, April 2005.
    213. 213)
      • 213. Gasparri, A., Pascucci, F., Ulivi, G.: ‘A distributed extended information filter for self-localization in sensor networks’. Proc. IEEE 19th Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC 2008), September 2008, pp. 15.
    214. 214)
      • 214. Zheng, S., Jiang, T., Baras, J.S.: ‘Robust state estimation Under false data injection in distributed sensor networks’. IEEE Globecom 2010 Proc., Miami, Florida, 6–10 December, 2010, pp. 15.
    215. 215)
      • 215. Saber, O. R.: ‘Distributed Kalman filter with embedded consensus filters’. Proc. 44th IEEE Conf. on Decision and Control, 2005 and 2005 European Control Conf. (CDC-ECC'05), 2005.
    216. 216)
      • 216. Dey, S., Leong, A.S., Evans, J.S.: ‘On Kalman filtering With faded measurements’. 46th Annual Allerton Conf., Allerton House, UIUC, Illinois, USA, 23–26 September, 2008, pp. 607614.
    217. 217)
      • 217. Saber, O.R.: ‘Distributed Kalman filtering algorithms for sensor networks’. Proc. 46th IEEE Conf. on Decision and Control, December 2007.
    218. 218)
      • 218. Zhu, B., Sinopoli, B., Poolla, K., Sastry, S.: ‘Estimation over wireless sensor networks’. Proc. 2007 American Control Conf., Marriott Marquis Hotel at Times Square, New York City, USA, 11–13 July, 2007, pp. 27322737.
    219. 219)
      • 219. Oh, S., Sastry, S.: ‘Distributed networked control system with lossy links: state estimation and stabilizing communication control’. Proc. 45th IEEE Conf. on Decision and Control, Manchester Grand Hyatt Hotel, San Diego, CA, USA, 13–15 December, 2006, pp. 19421947.
    220. 220)
      • 220. Schenato, L., Sinopoli, B., Sastry, S.S.: ‘Foundations of control and estimation over lossy networks’, Proc. IEEE, 2007, 95, (1), pp. 163187 (doi: 10.1109/JPROC.2006.887306).
    221. 221)
      • 221. Ding, D., Wang, Z., Dong, H., Shu, H.: ‘Distributed H-infinity state estimation with stochastic parameters and nonlinearities through sensor networks: the finite-horizon case’, Automatica, 2012, 48, (8), pp. 15751585 (doi: 10.1016/j.automatica.2012.05.070).
    222. 222)
      • 222. Dong, H., Wang, Z., Gao, H.: ‘Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts’, IEEE Trans. Signal Process., 2012, 60, (6), pp. 31643173 (doi: 10.1109/TSP.2012.2190599).
    223. 223)
      • 223. Liang, J., Wang, Z., Liu, X.: ‘Distributed state estimation for uncertain Markov-type sensor networks with mode-dependent distributed delays’, Int. J. Robust Nonlinear Control, 2012, 22, (3), pp. 331346 (doi: 10.1002/rnc.1699).
    224. 224)
      • 224. Shen, B., Wang, Z., Liu, X.: ‘A stochastic sampled-data approach to distributed H-infinity filtering in sensor networks’, IEEE Trans. Circuits Syst. I, 2011, 58, (9), pp. 22372246 (doi: 10.1109/TCSI.2011.2112594).
    225. 225)
      • 225. Shen, B., Wang, Z., Hung, Y.S., Chesi, G.: ‘Distributed H-infinity filtering for polynomial nonlinear stochastic systems in sensor networks’, IEEE Trans. Ind. Electron., 58, (5), 2011, pp. 19711979 (doi: 10.1109/TIE.2010.2053339).
    226. 226)
      • 226. Liang, J., Wang, Z., Liu, X.: ‘Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements’, IEEE Trans. Neural Netw., 2011, 22, (3), pp. 486496 (doi: 10.1109/TNN.2011.2105501).
    227. 227)
      • 227. He, X., Wang, Z., Ji, Y., Zhou, D.: ‘Robust fault detection for networked systems with distributed sensors’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (1), pp. 166177 (doi: 10.1109/TAES.2011.5705667).
    228. 228)
      • 228. Wen, K., Geng, Z.: ‘Modelling and analysis of distributed networked control systems’, IET Control Theory Applic., 2012, 6, (9), pp. 13041312 (doi: 10.1049/iet-cta.2010.0589).
    229. 229)
      • 229. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.: ‘Kalman filtering with intermittent observations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14531464 (doi: 10.1109/TAC.2004.834121).
    230. 230)
      • 230. Liu, X., Goldsmith, A.: ‘Kalman filtering with partial observation losses’. Proc. 43rd IEEE Conf. on Decision and Control, Paradise Island, Bahamas, December 2004.
    231. 231)
      • 231. Roecker, J.A., McGillem, C.D.: ‘Comparison of two-Sensor tracking methods based on state vector fusion and measurement fusion’, IEEE Trans. AES, 1988, 24, (4), pp. 447449.
    232. 232)
      • 232. Liu, Z., Wang, M., Huang, J.: ‘An evaluation of several fusion algorithms for multi-sensor tracking system’, J. Inf. Comput. Sci., 2010, 7, (10), pp. 21012109.
    233. 233)
      • 233. Fong, L.W.: ‘Multi-sensor track-to-track fusion via linear minimum variance sense estimators’, Asian J. Control, 2008, 10, (3), pp. 277290 (doi: 10.1002/asjc.34).
    234. 234)
      • 234. Chang, K.C., Saha, R.K., Shalom, B., , Y.: ‘On optimal track-to-track fusion’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (4), pp. 12711276 (doi: 10.1109/7.625124).
    235. 235)
      • 235. Kim, K.H.: ‘Development of track-to-track fusion algorithm’. Proc. American Control Conf., Troy: Rensselaer Polytechnic Institute, Maryland, 1994, pp. 10371041.
    236. 236)
      • 236. Chen, H., Kirubarajan, T., Shalom, B., , Y.: ‘Performance limits of track- to-track fusion vs. centralized estimation: theory and application’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (2), pp. 386398 (doi: 10.1109/TAES.2003.1207252).
    237. 237)
      • 237. Chen, H., Kirubarajan, T., Shalom, B. Y.: ‘Performance limits of track-to-track fusion vs. centralized estimation: theory and application’. Proc. Fourth Int. Conf. on Information Fusion, Montreal, Quebec, 2001.
    238. 238)
      • 238. Shalom, B., , Y., Campo, L.: ‘The effect of the common process noise on the two-sensor fused-track covariance’, IEEE Trans. Aerosp. Electron. Syst., 1986, 22, (6), pp. 688694.
    239. 239)
      • 239. Shalom, B., , Y., Campo, L.: ‘The effect of the common process noise on the two-sensor fused-track covariance’, IEEE Trans. Aerosp. Electron. Syst., 1986, 22, (6), pp. 803805 (doi: 10.1109/TAES.1986.310815).
    240. 240)
      • 240. Saha, R.K., Chang, K.C.: ‘An efficient algorithm for multisensor track fusion’, IEEE Trans. Aerosp. Electron. Syst., 1998, 34, (1), pp. 200210 (doi: 10.1109/7.640278).
    241. 241)
      • 241. Shalom, B., , Y.: ‘On the track-to-track correlation problem’, IEEE Trans. Autom. Control, 1981, 26, (2), pp. 571572 (doi: 10.1109/TAC.1981.1102635).
    242. 242)
      • 242. Saha, R.K.: ‘Track to track fusion with dissimilar sensors’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (3), pp. 10211029 (doi: 10.1109/7.532261).
    243. 243)
      • 243. Chang, K.C.: ‘Evaluating hierarchical track fusion with information matrix filter’. Proc. 3rd Int. Conf. on Information Fusion, 10–13 July 2000, vol. 1, pp. MOC2/3MOC2/9.
    244. 244)
      • 244. Shalom, B., , Y., Campo, L.: ‘The effect of the common process noise on the two-sensor fused-track covariance’, IEEE Trans. Aerosp. Electron. Syst., 1986, 22, (6), pp. 803805 (doi: 10.1109/TAES.1986.310815).
    245. 245)
      • 245. Saha, R.K., Chang, K.C.: ‘An efficient algorithm for multi-sensor track Fusion’, IEEE Trans AES, 1998, 34, (1), pp. 200210.
    246. 246)
      • 246. Saha, R.K., Chang, K.C.: ‘Centralized fusion of remote tracks’, Opt. Eng. Special Sec. Sensor Fusion, 1998, 37, (2), pp. 468476.
    247. 247)
      • 247. Belkin, B., Anderson, S.L., Sommar, K.M.: ‘The pseudo-measurement approach to track-to-track data fusion’. Proc. 1993 Joint Service Data Fusion Symp., 1993, pp. 519538.
    248. 248)
      • 248. Drummond, O.E.: ‘Feedback in track fusion without process noise’, Proc. SPIE Conf. Signal Data Process. Small Targets, 1995, 2561, pp 369383.
    249. 249)
      • 249. Chang, K.C., Tian, Z., Saha, R.K.: ‘Performance evaluation of track fusion with information filter’. Proc. 1st Int. Conf. Multisource-Multisensor Information Fusion, Las Vegas, NV, July 1998, pp. 648654.
    250. 250)
      • 250. Mori, S., Chong, C.-Y., Chang, K.C., Barker, W.: ‘Track association and track fusion with non-deterministic target dynamics’. Proc. Second Int. Conf. on Information Fusion, July 1999, pp. 231238.
    251. 251)
      • 251. Chong, C.-Y., Mori, S., Chang, K.C., Barker, W.: ‘Architectures and algorithms for track association and fusion’. Proc. Second Int. Conf. on Information Fusion, July 1999, pp. 239246.
    252. 252)
      • 252. Chen, H.M., Kirubarajan, T., Bar-Shalom, Y.: ‘Performance limits of track-to-track fusion versus centralized estimation: theory and application’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (2), pp. 386400 (doi: 10.1109/TAES.2003.1207252).
    253. 253)
      • 253. Chang, K.C., Zhi, T., Saha, R.K.: ‘Performance evaluation of track fusion with information matrix filter’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (2), pp. 455466 (doi: 10.1109/TAES.2002.1008979).
    254. 254)
      • 254. Belkin, B., Anderson, S.L., Sommar, K.M.: ‘The pseudo-measurement approach to track-to-track data fusion’. Proc. 1993 Joint Service Data Fusion Symp., 1993, pp. 519538.
    255. 255)
      • 255. Drummond, O.E.: ‘Feedback in track fusion without process noise’. Proc. SPIE Conf. on Signal and Data Processing of Small Targets, vol. 2561, 1995, pp. 369383.
    256. 256)
      • 256. Chang, K.C., Saha, R.K., Bar-Shalom, Y.: ‘On optimal track-to-track fusion’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, pp. 12711276 (doi: 10.1109/7.625124).
    257. 257)
      • 257. Shalom, B., , Y.: ‘On the track-to-track cross-covariance problem’, IEEE Trans. Autom. Control, 1981, 26, pp. 571572 (doi: 10.1109/TAC.1981.1102635).
    258. 258)
      • 258. Chang, K.C., Tian, Z., Saha, R.K.: ‘Performance evaluation of track fusion with information matrix filter’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (2), pp. 455466 (doi: 10.1109/TAES.2002.1008979).
    259. 259)
      • 259. Fong, L.W.: ‘Integrated track-to-track fusion with modified probabilistic neural network’, 2006 CIE Int. Conf. on Radar, Shanghai China, 2006, vol. 2, pp. 18691873.
    260. 260)
      • 260. Shalom, B., , Y., Campo, L.: ‘The effect of the common process noise on the two-sensor fused-track covariance’, IEEE Trans. Aerosp. Electron. Syst., 1986, AES-22, pp. 803805 (doi: 10.1109/TAES.1986.310815).
    261. 261)
      • 261. Mori, S., Barker, W.H., Chong, C.Y., Chang, K.C.: ‘Track association and track fusion with non-deterministic target dynamics’, IEEE Trans. Aerosp. Electron. Syst., AES-38, 2002, pp. 659668 (doi: 10.1109/TAES.2002.1008994).
    262. 262)
      • 262. Roecker, J.A., McGillem, C.D.: ‘Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion’, IEEE Trans. Aerosp. Electron. Syst., 1988, AES-24, pp. 447449 (doi: 10.1109/7.7186).
    263. 263)
      • 263. Stankovic, S.S., Stankovic, M.S., Stipanovic, D.M.: ‘Consensus based overlapping decentralized estimator’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 410415 (doi: 10.1109/TAC.2008.2009583).
    264. 264)
      • 264. Saber, O., R., Fax, A., Murry, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, (1), pp. 215233.
    265. 265)
      • 265. Dimakis, A.G., Kar, S., Moura, J.M.F., Rabbat, M.G., Scaglione, A.: ‘Gossip algorithms for distributed signal processing’, Proc. IEEE, 2010, 98, pp. 18471864 (doi: 10.1109/JPROC.2010.2052531).
    266. 266)
      • 266. Carli, R., Chiuse, A., Schenato, L., Zampieri, S.: ‘Distributed Kalman filtering based on consensus strategies’, IEEE J. Sel. Areas Commun., 2008, 26, (4), pp. 622633 (doi: 10.1109/JSAC.2008.080505).
    267. 267)
      • 267. Saber, O., , R.: ‘Distribute Kalman filtering and sensor fusion in sensor networks’, Springer-Lecture Notes in Control and Information Sciences, 2006, vol. 331/2006, pp. 157167, DOI: 10.1007/11533382-10.
    268. 268)
      • 268. Matei, I., Baras, J.S.: ‘Consensus-based linear distributed filtering’. The Institute for System Research, ISR Technical Report2010-5.
    269. 269)
      • 269. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: ‘Distributed Kalman filtering based on consensus strategies’, IEEE J. Sel. Area Commun., 2008, 26, (4), pp. 622633 (doi: 10.1109/JSAC.2008.080505).
    270. 270)
      • 270. Saber, O., , R.: ‘Distributed Kalman filter with embedded consensus filtersProc. 44th IEEE Conf. on Decision and the Eur. Control Conf., Seville, Spain, 2005, pp. 81798184.
    271. 271)
      • 271. Saber, O., , R., Shamma, J.S.: ‘Consensus filters for sensor networks and distributed sensor fusion’. 44th IEEE Conf. on Decision and Control, 2005 and 2005 European Control Conf., CDC-ECC'05, 12–15 December 2005, pp. 66986703.
    272. 272)
      • 272. Saber, O., R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533 (doi: 10.1109/TAC.2004.834113).
    273. 273)
      • 273. Saber, O., , R., Murray, R.M.: ‘Consensus protocols for networks of dynamic agents’. Proc. Am. Control Conf., 2003, 2, pp. 951956.
    274. 274)
      • 274. Mohammadi, A., Asif, A.: ‘Consensus-based distributed unscented particle filter’. 2011 IEEE Stat. Signal Processing Workshop (SSP), June 2011, pp. 237240.
    275. 275)
      • 275. Spanos, D.P., Saber, O., , R., Murray, R.J.: ‘Approximate distributed Kalman filtering in sensor networks with quantifiable performance’. Proc. Fourth Int. Symp. on Information Processing in Sensor Networks, Los Angeles, CA, 2005.
    276. 276)
      • 276. Saber, O., , R., Shamma, J.S.: ‘Consensus filters for sensor networks and distributed Sensor Fusion’. Proc. 44th IEEE Conf. on Decision and Control, and the European Control Conference 2005, Seville, Spain, 12–15 December, 2005, pp. 66986703.
    277. 277)
      • 277. Li, J., Xu, S., Chu, Y., Wang, H.: ‘Distributed average consensus control in networks of agents using outdated states’, IET Control Theory Applic., 2010, 4, (5), pp. 746758 (doi: 10.1049/iet-cta.2008.0531).
    278. 278)
      • 278. Ugrinovskii, V., Langbort, C.: ‘Distributed H consensus-based estimation of uncertain systems via dissipativity theory’, IET Control Theory Applic., 2011, 5, (12), pp. 14581469 (doi: 10.1049/iet-cta.2010.0490).
    279. 279)
      • 279. Li, W., Jia, Y.: ‘Consensus-based distributed information filter for a class of jump Markov systems’, IET Control Theory Applic., 2011, 5, (10), pp. 12141222 (doi: 10.1049/iet-cta.2010.0240).
    280. 280)
      • 280. Shen, B., Wang, Z., Hung, Y.S.: ‘Distributed consensus H-infinity filtering in sensor networks with multiple missing measurements: the finite-horizon case’, Automatica, 46, (10), 2010, pp. 16821688 (doi: 10.1016/j.automatica.2010.06.025).
    281. 281)
      • 281. Figueiredo, M.A.T., Jain, A.K.: ‘Unsupervised learning of finite mixture models’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (3), pp. 381396 (doi: 10.1109/34.990138).
    282. 282)
      • 282. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661 (doi: 10.1109/TAC.2005.846556).
    283. 283)
      • 283. Oreshkin, B.N., Liu, X., Coates, M.J.: ‘Efficient delay-tolerant particle filtering’, IEEE Trans. Signal Process., 2011, 59, (7), pp. 33693381 (doi: 10.1109/TSP.2011.2140110).
    284. 284)
      • 284. Tasoulis, D.K., Adams, N.M., Hand, D.J.: ‘Selective fusion of out-of-sequence measurements’, Inf. Fusion, 2010, 11, (2), pp. 183191 (doi: 10.1016/j.inffus.2009.06.002).
    285. 285)
      • 285. Ong, L., , -L., Upcroft, B., Ridley, M., Bailey, T., Sukkarieh, S., Whyte, D. H.: ‘Consistent Methods for Decentralized Data Fusion using particle filters’. Proc. 2006 IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent Syst.(MFI 2006), pp. 8591, 2006.
    286. 286)
      • 286. Mohammadi, A., Asif, A.: ‘Consensus-based distributed unscented particle filter’, 2011 IEEE Statistical Signal Processing Workshop (SSP), pp. 237240.
    287. 287)
      • 287. Coates, M.J., Oreshkin, B.N.: ‘Asynchronous distributed particle filter via decentralized evaluation of Gaussian products’. Proc. ISIF Int. Conf. Inf. Fusion, 2010.
    288. 288)
      • 288. Gu, D., Junxi, S., Zhen, H., Hongzuo, L.: ‘Consensus based distributed particle filter in sensor networks’. IEEE Int. Conf. on Information and Automation, 2008, pp. 302307.
    289. 289)
      • 289. Orton, M., Marrs, A.: ‘Storage efficient particle filters for the out-of-sequence measurement problem’. Proc. IEE Colloq. Target Tracking: Algorithms and Applications, Enschede, The Netherlands, October 2001.
    290. 290)
      • 290. Orton, M., Marrs, A.: ‘Particle filters for tracking with out-of-sequence measurements’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (2), pp. 693702 (doi: 10.1109/TAES.2005.1468758).
    291. 291)
      • 291. Mallick, M., Kirubarajan, T., Arulampalam, S.: ‘Out-of-sequence measurement processing for tracking ground target using particle filters’. Proc. IEEE Aerosp. Conf., 2002, 4, pp. 18091818.
    292. 292)
      • 292. Orguner, U., Gustafsson, F.: ‘Storage efficient particle filters for the out-of-sequence measurement problem’. Proc. ISIF Int. Conf. Inf. Fusion, Cologne, Germany, July 2008.
    293. 293)
      • 293. Liu, X., Oreshkin, B.N., Coates, M.J.: ‘Efficient delay-tolerant particle filtering through selective processing of out-of-sequence measurements’. Proc. ISIF Int. Conf. Inf. Fusion, Edinburgh, UK, July 2010.
    294. 294)
      • 294. Sukhavasi, R.T., Hassibi, B.: ‘The Kalman like particle filter : optimal estimation with quantized innovations/measurements’. Joint 48th IEEE Conf. on Decision and Control and 28th Chinese Control Conference, Shanghai, P. R. China, 16–18 December, 2009, pp. 44464451.
    295. 295)
      • 295. Aounallah, F., Amara, R., Alouane, M.T.H.: ‘Particle filtering based on sign of innovation for distributed estimation in binary wireless sensor networks’, SPAWC2008, pp. 629633.
    296. 296)
      • 296. Zuo, L., Mehrotra, K., Varshney, P.K., Mohan, C.K.: ‘Bandwidth-efficient target tracking in distributed sensor networks using particle filters’. 2006 Ninth Int. Conf. Information Fusion, 10–13 July, 2006, pp. 14.
    297. 297)
      • 297. Sheng, X., Hu, Y.-H.: ‘Distributed particle filters for wireless sensor network target tracking’, ICASSP, Philadelphia, PA, USA, 2005.
    298. 298)
      • 298. Sheng, X., Hu, Y.H.: ‘Distributed particle filters for wireless sensor network target tracking’, ICASSP2005, pp. IV-845IV-848.
    299. 299)
      • 299. Coates, M.: ‘Distributed particle filters for sensor networks’. Proc. Information Processing in Sensor Networks, IPSN, 2003, pp. 99107.
    300. 300)
      • 300. Liu, H.Q., So, H.C., Chan, W., Lui, K.W.K.: ‘Distributed particle filter for target tracking in sensor networks’, Prog. Electromagn. Res., 2009, 11, pp. 171182 (doi: 10.2528/PIERC09092905).
    301. 301)
      • 301. Lai, N.-L., King, C.-T., Lin, C.-H.: ‘On maximizing the throughput of converge cast in wireless sensor networks’. GPC 08: Proc. Third Int. Conf. on Advances in grid and pervasive computing, 2008, pp. 396408.
    302. 302)
      • 302. Coates, M., Ing, G.: ‘Sensor network particle filters: motes as particles’, IEEE Workshop on Statistical Signal Processing, 2005, pp. 11521157.
    303. 303)
      • 303. Sheng, X., Hu, Y.-H, Ramanathan, P.: ‘Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network’. IPSN 05: Proc. Fourth Int. Symp. on Information Processing in Sensor Networks, Piscataway, NJ, 2005, p. 24.
    304. 304)
      • 304. Ing, G., Coates, M.J.: ‘Parallel particle filters for tracking in wireless sensor networksProc. IEEE Sixth Workshop on Signal Processing Advances in Wireless Communications, 2005, pp. 935939.
    305. 305)
      • 305. Ran, C.J., Tao, G.L., Liu, J.F., Deng, Z.L.: ‘Self-tuning decoupled fusion Kalman predictor and its convergence analysis’, IEEE Sensors J., 2009, 9, (12), pp. 20242032 (doi: 10.1109/JSEN.2009.2033260).
    306. 306)
      • 306. Gao, Y., Jia, W.J., Sun, X.J., Deng, Z.L.: ‘Self-tuning multisensor weighted measurement fusion Kalman filter’, IEEE Tran. Aerosp. Electron. Syst., 2009, 45, (1), 179191 (doi: 10.1109/TAES.2009.4805272).
    307. 307)
      • 307. Gao, Y., Ran, C.J., Sun, X.J., Deng, Z.L.: ‘Optimal and self-tuning weighted measurement fusion Kalman filters and their asymptotic global optimality’, Int J. Adapt. Control Signal Process., 2010, 24, pp. 9821004 (doi: 10.1002/acs.1178).
    308. 308)
      • 308. Hao, G., Deng, Z.L.: ‘Self-tuning measurement fusion Kalman filter’. Proc. Sixth World Congress on Control and Automation, Dalian, China, vol. 2, 21–23 June 2006, pp. 15711575.
    309. 309)
      • 309. Hao, G., Jia, W.J., Deng, Z.L.: ‘Self-tuning multisensor measurement fusion Kalman filter’. Proc. 25th Chinese Control Conf., Harbin, China, 7–11 August, 2006, pp. 395403.
    310. 310)
      • 310. Gao, Y., Jia, W.J., Sun, X.J., Deng, Z.L.: ‘Self-tuning multisensor weighted measurement fusion Kalman filter’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (1), pp. 168179.
    311. 311)
      • 311. Gui-Li, T., Xue, H., , G., Zi-Li, D.: ‘Self-tuning distributed fusion Kalman filter With asymptotic global optimalityProc. 29th Chinese Control Conf., 29–31 July, 2010, Beijing, China, pp. 12681272.
    312. 312)
      • 312. Deng, Z.L., Li, C.B.: ‘Self-tuning information fusion Kalman predictor weighted by diagonal matrices and its convergence analysis’, Acta Autom. Sin., 2007, 33, (2), pp. 156163 (doi: 10.1360/aas-007-0156).
    313. 313)
      • 313. Ran, C., Deng, Z.: ‘Self-tuning Weighted measurement fusion Kalman filter and its convergence analysis’. Joint 48th IEEE Conf. Decision and Control and 28th Chinese Control Conf., Shanghai, P.R. China, 16–18 December, 2009, pp. 18301835.
    314. 314)
      • 314. Deng, Z.L., Gao, Y., Li, C.B., Hao, G.: ‘Self-tuning decoupled information fusion Wiener state component filters and their convergence’, Automatica, 2008, 44, pp. 685695 (doi: 10.1016/j.automatica.2007.07.008).
    315. 315)
      • 315. Sun, X.J., Zhang, P., Deng, Z.L.: ‘Self-tuning decoupled fusion Kalman filter based on Riccati equation’, Front. Electr. Electron. Eng. China, 2008, 3, (4), pp. 459464 (doi: 10.1007/s11460-008-0077-4).
    316. 316)
      • 316. Aounallah, F., Amara, R., Alouane, M.T.H.: ‘Particle filtering based on sign of innovation for tracking a jump Markovian motion in a binary WSN’. 2009 Third Int. Conf. on Sensor Technologies and Applications, pp. 252255.
    317. 317)
      • 317. Aounallah, F., Amara, R., Alouane, M.T.-H.: ‘Particle filtering based on sign of innovation for distributed estimation in binary wireless sensor networks’, IEEE Workshop SPAWC2008, Recife, Brazil, July 2008.
    318. 318)
      • 318. Ma, J., Sun, S.: ‘Self-Tuning information fusion reduced-Order Kalman predictors for Stochastic Singular Systems’. Proc. Sixth World Congress on Intelligent Control and Automation, June 21–23, 2006, Dalian, China, pp. 15241528.
    319. 319)
      • 319. Moir, T.J., Grimble, M.J.: ‘Optimal self-tuning filtering, prediction and smoothing for discrete multivariable processes’, IEEE Trans. Autom. Control, 1984, 29, (2), pp. 128137 (doi: 10.1109/TAC.1984.1103464).
    320. 320)
      • 320. Hagander, P., Wittenmark, B.: ‘A self-tuning filtering for fixed-lag smoothing’, IEEE Trans. Inf. Theory, 1977, 23, pp. 377384 (doi: 10.1109/TIT.1977.1055719).
    321. 321)
      • 321. Zi-Li, D., Bo, C. Li.: ‘Self-tuning information fusion Kalman predictor weighted by diagonal matrices and its convergence analysis’, Acta Autom. Sin., 2007, 33, (2), pp. 156163 (doi: 10.1360/aas-007-0156).
    322. 322)
      • 322. Hagander, P., Wittenmark, B.: ‘A self-tuning filter for fixed-lag smoothing’, IEEE Trans. Inf. Theory, 1977, 23, (3), pp. 377384 (doi: 10.1109/TIT.1977.1055719).
    323. 323)
      • 323. Moir, T., Grimble, M.J.: ‘Optimal self-tuning filtering, prediction, and smoothing for multivariable processes’, IEEE Trans. Autom. Control, 1984, 29, (2), pp. 128137 (doi: 10.1109/TAC.1984.1103464).
    324. 324)
      • 324. Deng, Z.L., Zhang, H.S., Liu, S.J., Zhou, L.: ‘Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problems’, Automatica, 1996, 32, (2), pp. 199216 (doi: 10.1016/0005-1098(96)85549-X).
    325. 325)
      • 325. Fung, P.T.K., Grimble, M.J.: ‘Dynamic ship positioning using a self-tuning Kalman filter’, IEEE Trans. Autom. Control, 1983, 28, (3), pp. 339350 (doi: 10.1109/TAC.1983.1103226).
    326. 326)
      • 326. Deng, Z.L., Li, C.B.: ‘Self-tuning information fusion Kalman predictor weighted by scalars’. Proc. Sixth World Congress on Control and Automation, vol. 2, Dalian, China, 21–23 June 2006, pp. 14871491.
    327. 327)
      • 327. Deng, Z.L., Gao, Y., Li, C.B., Hao, G.: ‘Self-tuning decoupled information fusion Wiener state component filters and their convergence’, Automatica, 2008, 44, pp. 685695 (doi: 10.1016/j.automatica.2007.07.008).
    328. 328)
      • 328. Ran, C.J., Tao, G.L., Liu, J.F., Deng, Z.L.: ‘Self-tuning decoupled fusion Kalman predictor and its convergence analysis’, IEEE Sensors J., 2009, 9, (12), pp. 20242032 (doi: 10.1109/JSEN.2009.2033260).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0732
Loading

Related content

content/journals/10.1049/iet-cta.2012.0732
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address