http://iet.metastore.ingenta.com
1887

Closed-loop subspace identification methods: an overview

Closed-loop subspace identification methods: an overview

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors present an overview of closed-loop subspace identification methods found in the recent literature. Since a significant number of algorithms has appeared over the last decade, the authors highlight some of the key algorithms that can be shown to have a common origin in autoregressive modelling. Many of the algorithms found in the literature are variants on the algorithms that are discussed here. In this study, the aim is to give a clear overview of some of the more successful methods presented throughout the last decade. Furthermore, the authors retrace these methods to a common origin and show how they differ. The methods are compared both on the basis of simulation examples and real data. Although the main focus in the literature has been on the identification of discrete-time models, identification of continuous-time models is also of practical interest. Hence, the authors also provide an overview of the continuous-time formulation of the identification framework.

References

    1. 1)
      • 1. Ljung, L.: ‘System identification: theory for the user’ (Prentice-Hall PTR, 1999, 2 edn.).
    2. 2)
      • 2. Chiuso, A.: ‘The role of vector autoregressive modeling in predictor-based subspace identification’, Automatica, 2007, 43, (6), pp. 10341048 (doi: 10.1016/j.automatica.2006.12.009).
    3. 3)
      • 3. Qin, S.J., Ljung, L.: ‘Closed-loop subspace identification with innovation estimation’. IFAC Symp. on System Identification, Rotterdam, 2003.
    4. 4)
      • 4. Di Ruscio, D.: ‘Closed and open loop subspace system identification of the Kalman filter’, Model. Identif. Control, 2009, 30, (2), pp. 7186 (doi: 10.4173/mic.2009.2.3).
    5. 5)
      • 5. van der Veen, G.J., van Wingerden, J.W., Verhaegen, M.: ‘Closed-loop MOESP subspace model identification with parametrisable disturbances’. Proc. 49th IEEE Control Conf. on Decision and Control, Atlanta, 12 2010.
    6. 6)
      • 6. Gevers, M.: ‘Identification for control: from the early achievements to the revival of experiment design’, Eur. J. Control, 2005, 11, (4–5), pp. 335352 (doi: 10.3166/ejc.11.335-352).
    7. 7)
      • 7. Verhaegen, M.: ‘Application of a subspace model identification technique to identify LTI systems operating in closed-loop’, Automatica, 1993, 29, pp. 10271040 (doi: 10.1016/0005-1098(93)90104-2).
    8. 8)
      • 8. Chou, C.T., Verhaegen, M.: ‘Subspace algorithms for the identification of multivariable dynamic errors-in-variables models’, Automatica, 1997, 33, (10), pp. 18571869 (doi: 10.1016/S0005-1098(97)00092-7).
    9. 9)
      • 9. Van Overschee, P., De Moor, B.: ‘Closed loop subspace system identification’. Proc. 36th IEEE Conf. on Decision and Control, 1997, vol 2, pp. 18481853 (doi: 10.1109/CDC.1997.657851).
    10. 10)
      • 10. Ljung, L., McKelvey, T.: ‘Subspace identification from closed loop data’, Signal Process., 1996, 52, (2), pp. 209215 (doi: 10.1016/0165-1684(96)00054-0).
    11. 11)
      • 11. Ng, T.S., Goodwin, G.C., Anderson, B.D.O.: ‘Identifiability of mimo linear dynamic systems operating in closed loop’, Automatica, 1977, 13, (5), pp. 477485 (doi: 10.1016/0005-1098(77)90068-1).
    12. 12)
      • 12. Van den Hof, P.M.J., de Callafon, R.A.: ‘Multivariable closed-loop identification: from indirect identification to dual-youla parametrization’. Proc. 35th IEEE Conf. on Decision and Control, 1996, vol 2, pp. 13971402.
    13. 13)
      • 13. Van den Hof, P.M.J.: ‘Closed-loop issues in system identification’, Annu. Rev. Control, 1998, 22 pp. 173186 (doi: 10.1016/S1367-5788(98)00016-9).
    14. 14)
      • 14. Jansson, M.: ‘Subspace identification and ARX modeling’. Proc. 13th IFAC Symp. on System Identification, Rotterdam, Netherlands, 2003, pp. 16251630.
    15. 15)
      • 15. Chiuso, A., Picci, G.: ‘Constructing the state of random processes with feedback’. Proc. 13th IFAC Symp. on System Identification, Rotterdam, The Netherlands, 2003.
    16. 16)
      • 16. Chiuso, A., Picci, G.: ‘Geometry of oblique splitting subspaces, minimality and Hankel operators’, in Rantzer, A., Byrnes, C. (Eds.): ‘Directions in mathematical systems theory and optimization’, vol 286 of (Lecture Notes in Control and Information Sciences), (Springer, Berlin, Heidelberg, 2003), pp. 85126.
    17. 17)
      • 17. Qin, S.J., Lin, W., Ljung, L.: ‘A novel subspace identification approach with enforced causal models’, Automatica, 2005, 41, (12), pp. 20432053 (doi: 10.1016/j.automatica.2005.06.010).
    18. 18)
      • 18. Chiuso, A.: ‘Asymptotic variance of closed-loop subspace identification methods’, IEEE Trans. Autom. Control, 2006, 51, (8), pp. 12991314 (doi: 10.1109/TAC.2006.878703).
    19. 19)
      • 19. Oku, H., Fujii, T.: ‘Direct subspace model identification of LTI systems operating in closed-loop’. Proc. 43rd IEEE Conf. Decision and Control, vol. 2, 2004, pp. 22192224.
    20. 20)
      • 20. Katayama, T., Kawauchi, H., Picci, G.: ‘Subspace identification of closed loop systems by the orthogonal decomposition method’, Automatica, 2005, 41, (5), pp. 863872 (doi: 10.1016/j.automatica.2004.11.026).
    21. 21)
      • 21. Gilson, M., Mercère, G.: ‘Subspace based optimal IV method for closed loop system identification’. IFAC Symp. on System Identification, 2006.
    22. 22)
      • 22. Gilson, M., Garnier, H., Young, P.C., Van den Hof, P.M.J.: ‘Optimal instrumental variable method for closed-loop identification’, Control Theory Appl. IET, 2011, 5, (10), pp. 11471154 (doi: 10.1049/iet-cta.2009.0476).
    23. 23)
      • 23. Chiuso, A., Picci, G.: ‘Consistency analysis of some closed-loop subspace identification methods’, Automatica, 2005, 41, (3), pp. 377391 (doi: 10.1016/j.automatica.2004.10.015).
    24. 24)
      • 24. Peternell, K., Scherrer, W., Deistler, M.: ‘Statistical analysis of novel subspace identification methods’, Signal Process., 1996, 52, (2), pp. 161177 (doi: 10.1016/0165-1684(96)00051-5).
    25. 25)
      • 25. Jansson, M., Wahlberg, B.: ‘On consistency of subspace methods for system identification’, Automatica, 1998, 34, (12), pp. 15071519 (doi: 10.1016/S0005-1098(98)80004-6).
    26. 26)
      • 26. Knudsen, T.: ‘Consistency analysis of subspace identification methods based on a linear regression approach’, Automatica, 2001, 37, (1), pp. 8189 (doi: 10.1016/S0005-1098(00)00125-4).
    27. 27)
      • 27. Klein, V., Morelli, E.A.: ‘Aircraft system identification: theory and practice’, (AIAA, 2006).
    28. 28)
      • 28. Tischler, M., Remple, R.: ‘Aircraft and rotorcraft system identification: engineering methods with flight-test examples’ (AIAA, 2006).
    29. 29)
      • 29. Bergamasco, M., Lovera, M.: ‘Continuous-time predictor-based subspace identification for helicopter dynamics’. ‘37th European Rotorcraft Forum’, Gallarate, Italy, 2011.
    30. 30)
      • 30. Garnier, H., Wang, L. (Eds.): ‘Identification of continuous-time models from sampled data’, (Springer, 2008).
    31. 31)
      • 31. Garnier, H., Soderstrom, T., Yuz, J.I.: ‘Editorial special issue on continuous-time model identification’, Control Theory Appl. IET, 2011, 5, (7), pp. 839841 (doi: 10.1049/iet-cta.2011.9043).
    32. 32)
      • 32. Mohd-Moktar, R., Wang, L.: ‘Continuous-time state space model identification using closed-loop data’. Second Asia Int. Conf. on Modelling & Simulation, Kuala Lumpur, Malaysia, 2008.
    33. 33)
      • 33. Bergamasco, M., Lovera, M.: ‘Continuous-time subspace identification in closed-loop’. Proc. 19th Int. Symp. on Mathematical Theory of Networks and Systems, Budapest, Hungary, 2010.
    34. 34)
      • 34. Bergamasco, M., Lovera, M.: ‘Continuous-time subspace identification in closed-loop using Laguerre filters’. Proc. 49th IEEE Control Conf. on Decision and ControlAtlanta, 2010.
    35. 35)
      • 35. Bergamasco, M., Lovera, M.: ‘Continuous-time predictor-based subspace identification using Laguerre filters’, Control Theory Appl. IET, 2011, 5, (7), pp. 856867 (doi: 10.1049/iet-cta.2010.0228).
    36. 36)
      • 36. Haverkamp, L.R.J.: ‘State space identification: theory and practice’. PhD thesis, Delft University of Technology, 2001.
    37. 37)
      • 37. Ohta, Y., Kawai, T.: ‘Continuous-time subspace system identification using generalized orthonormal basis functions’. Proc. 16th Int. Symp. on Mathematical Theory of Networks and Systems, Leuven, Belgium, 2004.
    38. 38)
      • 38. Chiuso, A.: ‘On the relation between CCA and predictor based subspace identification’, IEEE Trans. Autom. Control, 2007, 52, (10), 17951812 (doi: 10.1109/TAC.2007.906159).
    39. 39)
      • 39. Enqvist, M.: ‘Invertible time series and system identification in a nonlinear closed-loop setting’, ‘European research network on system identification (ERNSI Workshop)’, Maastricht, Netherlands, 2012.
    40. 40)
      • 40. Katayama, T.: ‘Subspace methods for system identification’ (Springer, 2005).
    41. 41)
      • 41. Van Overschee, P., De Moor, B.L.R.: ‘Subspace identification for linear systems: theory, implementation, applications’ (Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1996).
    42. 42)
      • 42. Goethals, I., Van Gestel, T., Suykens, J.A.K., Van Dooren, P., De Moor, B.: ‘Identification of positive real models in subspace identification by using regularization’, IEEE Trans. Autom. Control, 2003, 48, (10), pp. 18431847, 10 (doi: 10.1109/TAC.2003.817940).
    43. 43)
      • 43. Verhaegen, M., Verdult, V.: ‘Filtering and system identification: a least squares approach’ (Cambridge University Press, Cambridge, UK, 2007, 1st edn.).
    44. 44)
      • 44. Van den Hof, P.M.J., Schrama, R.J.P.: ‘Identification and control – closed-loop issues’, Automatica, 1995, 31, (12), pp. 17511770 (doi: 10.1016/0005-1098(95)00094-X).
    45. 45)
      • 45. Di Ruscio, D.: ‘Subspace system identification of the Kalman filter’, Model. Identif. Control, 2003, 24, (3), pp. 125157 (doi: 10.4173/mic.2003.3.1).
    46. 46)
      • 46. Chiuso, A.: ‘On the asymptotic properties of closed-loop CCA-type subspace algorithms: Equivalence results and role of the future horizon’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 634649 (doi: 10.1109/TAC.2009.2039239).
    47. 47)
      • 47. Katayama, T., Tanaka, H.: ‘An approach to closed-loop subspace identification by orthogonal decomposition’, Automatica, 2007, 43, (9), pp. 16231630 (doi: 10.1016/j.automatica.2007.02.011).
    48. 48)
      • 48. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (The Johns Hopkins University Press, 1996, 3rd edn.).
    49. 49)
      • 49. Bazanella, A.S., Gevers, M., Mišković, L.: ‘Closed-loop identification of MIMO systems: a new look at identifiability and experiment design’, Eur. J. Control, 2009, 16/3, pp. 228239.
    50. 50)
      • 50. Gevers, M., Bazanella, A.S., Bombois, X.J.A., Mišković, L.: ‘Identification and the information matrix: how to get just sufficiently rich?IEEE Trans. Autom. Control, 2009, 54, (12), pp. 28282840 (doi: 10.1109/TAC.2009.2034199).
    51. 51)
      • 51. Bombois, X.J.A., Scorletti, G., Gevers, M., Van den Hof, P.M.J., Hildebrand, R.: ‘Least costly identification experiment for control’, Automatica, 2006, 42, (10), pp. 16511662 (doi: 10.1016/j.automatica.2006.05.016).
    52. 52)
      • 52. Kulcsár, B., Verhaegen, M.: ‘Robust cautious data driven control with guaranteed mean square stability’. Proc. 49th IEEE Control Conf. on Decision and Control, Atlanta, 2010, pp. 22762281.
    53. 53)
      • 53. Dong, J., Verhaegen, M., Holweg, E.: ‘Closed-loop subspace predictive control for fault tolerant MPC design’. Proc. 17th IFAC World Congress, vol 17, 2008.
    54. 54)
      • 54. Ho, B.L., Kalman, R.E.: ‘Effective construction of linear state–variables models from input/output functions’, Regelungstechnik, 1966, 14, pp. 545548.
    55. 55)
      • 55. Kung, S.K.: ‘A new low-order approximation algorithm via singular value decomposition’. Proc. 29th Asilomar Conf. on Circuits, Systems and Computers, 1978, pp. 705714.
    56. 56)
      • 56. Juang, J.N., Pappa, R.S.: ‘An eigensystem realization algorithm (ERA) for modal parameter identification and model reduction’, AIAA, J. Guid. Control Dyn., 1985, 8, (5), pp. 620627 (doi: 10.2514/3.20031).
    57. 57)
      • 57. Phan, M., Horta, L.G., Juang, J.-N., Longman, R.W.: ‘Linear system identification via an asymptotically stable observer’, J. Opt. Theory Appl., 1993, 79, pp. 5986 (doi: 10.1007/BF00941887).
    58. 58)
      • 58. Phan, M., Horta, L.G., Juang, J.-N., Longman, R.W.: ‘Improvement of observer/Kalman filter identification (OKID) by residual whitening’, J. Vib. Acoust., 1995, 117, (2), pp. 232239 (doi: 10.1115/1.2873927).
    59. 59)
      • 59. Gustafsson, T.: ‘Subspace-based system identification: weighting and pre-filtering of instruments’, Automatica, 2002, 38, (3), pp. 433443 (doi: 10.1016/S0005-1098(01)00235-7).
    60. 60)
      • 60. Bauer, D., Ljung, L.: ‘Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms’, Automatica, 2002, 38, (5), pp. 763773 (doi: 10.1016/S0005-1098(01)00261-8).
    61. 61)
      • 61. Di Ruscio, D.: ‘A bootstrap subspace identification method: comparing methods for closed loop subspace identification by Monte Carlo simulations’, Model. Identif. Control, 2009, 30, (4), pp. 203222 (doi: 10.4173/mic.2009.4.2).
    62. 62)
      • 62. Chiuso, A., Muradore, R., Marchetti, E.: ‘Dynamic calibration of adaptive optics systems: A system identification approach’, IEEE Trans. Control Syst. Technol., 2010, 8, (3), pp. 705713 (doi: 10.1109/TCST.2009.2023914).
    63. 63)
      • 63. Houtzager, I., van Wingerden, J.W., Verhaegen, M.: ‘Fast-array recursive closed-loop subspace model identification’. Proc. 15th IFAC Symp. on System Identification, Saint Malo, France, 2009.
    64. 64)
      • 64. Mercère, G., Lecœuche, S., Lovera, M.: ‘Recursive subspace identification based on instrumental variable unconstrained quadratic optimization’, Int. J. Adapt. Control Signal Process., 2004, 18, pp. 771797 (doi: 10.1002/acs.835).
    65. 65)
      • 65. Qin, S.J., Ljung, L.: ‘Closed-loop subspace identification with innovation estimation’. Technical Report LiTH-ISY-R-2559, Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden, 122003.
    66. 66)
      • 66. de Korte, R.B.C.: ‘Subspace-based identification techniques for a ‘smart’ wind turbine rotor blade: a study towards adaptive data-driven control’. Master's thesis, Delft University of Technology, 12009.
    67. 67)
      • 67. van der Veen, G.J., van Wingerden, J.W., Verhaegen, M.: ‘Closed-loop MOESP subspace model identification with parametrisable disturbances’. Technical Report 10-015, Delft Center for Systems and Control, Delft University of Technology, 2010.
    68. 68)
      • 68. Verhaegen, M.: ‘Subspace model identification Part 3. Analysis of the ordinary output-error state-space model identification algorithm’, Int. J. Control, 1993, 58, (3), pp. 555586 (doi: 10.1080/00207179308923017).
    69. 69)
      • 69. Brewer, J.W.: ‘Kronecker products and matrix calculus in system theory’, IEEE Trans. Circuits Syst., 1978, 25, (9), pp. 772781 (doi: 10.1109/TCS.1978.1084534).
    70. 70)
      • 70. Verhaegen, M., Varga, A.: ‘Some experience with the MOESP class of subspace model identification methods in identifying the BO105 helicopter’. Technical report, DLR Oberpfaffenhofen, 1994.
    71. 71)
      • 71. Di Ruscio, D.: ‘Subspace system identification of the Kalman filter’. Technical Report, Telemark University College, Porsgrunn, Norway, 2004.
    72. 72)
      • 72. Nilsen, G.W.: ‘Topics in open and closed loop subspace system identification: finite data based methods’. PhD thesis, Norwegian University of Science and Technology, 2005.
    73. 73)
      • 73. Di Ruscio, D.: ‘A method for the identification of state space models from input and output measurements’, Model. Identif. Control, 1995, 16, (3), pp. 129143 (doi: 10.4173/mic.1995.3.2).
    74. 74)
      • 74. Di Ruscio, D.: ‘Combined deterministic and stochastic system identification and realization: DSR – a subspace approach based on observations’, Model. Identif. Control, 1996, 17, (3), pp. 193230 (doi: 10.4173/mic.1996.3.3).
    75. 75)
      • 75. Chiuso, A., Pillonetto, G., De Nicolao, G.: ‘Subspace identification using predictor estimation via Gaussian regression’. Proc. 47th IEEE Conf. on Decision and Control, 2008, pp. 32993304, 12.
    76. 76)
      • 76. Houtzager, I., van Wingerden, J.W., Verheagen, M.: ‘Predictor-based subspace identification toolbox version 0.4’, 2010.
    77. 77)
      • 77. Houtzager, I., van Wingerden, J.W., Verhaegen, M.: ‘VARMAX-based closed-loop subspace model identification’. Proc. 48th IEEE Conf. on Decision and Control, 2009, pp. 33703375.
    78. 78)
      • 78. Kuersteiner, G.M.: ‘Automatic inference for infinite order vector autoregressions’, Econ. Theory, 2005, 21, pp. 85115 (doi: 10.1017/S0266466605050073).
    79. 79)
      • 79. van Wingerden, J.W.: ‘The asymptotic variance of the PBSIDopt algorithm’. Proc. 16th IFAC Symp. on System Identification, Brussels, 2012.
    80. 80)
      • 80. Deistler, M., Peternell, K., Scherrer, W.: ‘Consistency and relative efficiency of subspace methods’, Automatica, 1995, 31, (12), pp. 18651875 (doi: 10.1016/0005-1098(95)00089-6).
    81. 81)
      • 81. Bauer, D., Jansson, M.: ‘Analysis of the asymptotic properties of the MOESP type of subspace algorithms’, Automatica, 2000, 36, (4), pp. 497509 (doi: 10.1016/S0005-1098(99)00174-0).
    82. 82)
      • 82. Van Gestel, T., Suykens, J.A.K., Van Dooren, P., De Moor, B.: ‘Identification of stable models in subspace identification by using regularization’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 14161420 (doi: 10.1109/9.948469).
    83. 83)
      • 83. Miller, D.N., de Callafon, R.A.: ‘Subspace identification with eigenvalue constraints’, Automatica, 2013, in press.
    84. 84)
      • 84. Lyzell, C., Enqvist, M., Ljung, L.: ‘Handling certain structure information in subspace identification’. Proc. 15th IFAC Symp. on System Identification, 2009.
    85. 85)
      • 85. Trnka, P., Havlena, V.: ‘Subspace like identification incorporating prior information’, Automatica, 2009, 45, (4), pp. 10861091 (doi: 10.1016/j.automatica.2008.12.005).
    86. 86)
      • 86. Alenany, A., Shang, H., Soliman, M., Ziedan, I.: ‘Brief paper – improved subspace identification with prior information using constrained least squares’, Control Theory Appl. IET, 2011, 5, (13), pp. 15681576 (doi: 10.1049/iet-cta.2010.0585).
    87. 87)
      • 87. Liu, Z., Vandenberghe, L.: ‘Interior-point method for nuclear norm approximation with application to system identification’, SIAM, J. Matrix Anal. Appl., 2009, 31, (3), pp. 12351256 (doi: 10.1137/090755436).
    88. 88)
      • 88. Hansson, A., Liu, Z., Vandenberghe, L.: ‘Subspace system identification via weighted nuclear norm optimization’, CoRR, abs/1207.0023, 2012.
    89. 89)
      • 89. Bergamasco, M.: ‘Continuous-time model identification with applications to rotorcraft dynamics’. PhD thesis, Politecnico di Milano, 2012.
    90. 90)
      • 90. Bastogne, T., Garnier, H., Sibille, P.: ‘A PMF-based subspace method for continuous-time model identification: application to a multivariable winding process’, Int. J. Control, 2001, 74, (2), pp. 118132 (doi: 10.1080/00207170150203471).
    91. 91)
      • 91. Mercère, G., Ouvrard, R., Gilson, M., Garnier, H.: ‘Identification de systèmes multivariables à temps continu par approche des sous-espaces’, J. Eur. Syst. Autom., 2008, 42, (2–3), pp. 261285.
    92. 92)
      • 92. Johansson, R., Verhaegen, M., Chou, C.T.: ‘Stochastic theory of continuous-time state-space identification’, Signal Process. IEEE Trans., 1999, 47, (1), pp. 4151 (doi: 10.1109/78.738238).
    93. 93)
      • 93. Ohta, Y., Kawai, T.: ‘Continuous-time subspace system identification using generalized orthonormal basis functions’. 16th Int. Symp. on Mathematical Theory of Networks and Systems, Leuven, Belgium, 2004.
    94. 94)
      • 94. Ohta, Y.: ‘Realization of input–output maps using generalized orthonormal basis functions’, Syst. Control Lett., 2005, 54, (6), pp. 521528 (doi: 10.1016/j.sysconle.2004.10.001).
    95. 95)
      • 95. Kinoshita, Y., Ohta, Y.: ‘Continuous-time system identification using compactly supported filter kernels generated from Laguerre basis functions’. Proc. 49th IEEE Control Conf. on Decision and Control, Atlanta, 2010.
    96. 96)
      • 96. Bergamasco, M., Lovera, M., Ohta, Y.: ‘Recursive continuous-time subspace identification using Laguerre filters’. 50th IEEE Conf. on Decision and Control and European Control Conference, Orlando, USA, 2011.
    97. 97)
      • 97. Akaike, H.: ‘Some problems in the application of the cross-spectral method’, in Harris, B. (Ed.): ‘Spectral analysis of time series’ (Wiley, 1967), pp. 81107.
    98. 98)
      • 98. Pintelon, R., Schoukens, J., Vandersteen, G., Barbé, K.: ‘Estimation of nonparametric noise and FRF models for multivariable systems – Part I: Theory’, Mech. Syst. Signal Process., 2010, 24, (3), pp. 573595 (doi: 10.1016/j.ymssp.2009.08.009).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0653
Loading

Related content

content/journals/10.1049/iet-cta.2012.0653
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address