http://iet.metastore.ingenta.com
1887

Improved bounds for the spectrum of interval matrices

Improved bounds for the spectrum of interval matrices

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents new sufficient conditions for Hurwitz and Schur stability of interval matrices. Tight bounds for the spectrum of interval matrices are estimated using computationally simple optimisation problems. The conservativeness is reduced further by application of ordinary similarity transformation. A necessary and sufficient vertex based criterion for the stability of a subclass of interval systems in continuous and discrete-time cases is also proposed. This enables the spectra for this class of interval systems to be determined exactly. A selection of various examples adopted from existing literature is used to demonstrate the utility of the proposed criteria.

References

    1. 1)
      • 1. Kharitonov, V.L.: ‘Asymptotic stability of an equilibrium position of a family of systems of linear differential equations’, Differ. Uravn., 1978, 14, pp. 20862088.
    2. 2)
      • 2. Barmish, B.R.: ‘New tools for robustness of linear systems’ (Macmillan Publishing Company, New York, 1994, 1st edn.).
    3. 3)
      • 3. Simfukwe, D.D., Pal, B.C.: ‘Robust and low order power oscillation damper design through polynomial control’, IEEE Trans. Power Syst., 2012, 27, (99), pp. 15991608.
    4. 4)
      • 4. Robak, S.: ‘Robust SVC controller design and analysis for uncertain power systems’, Control Eng. Pract., 2009, 17, (11), pp. 12801290 (doi: 10.1016/j.conengprac.2009.06.001).
    5. 5)
      • 5. Rigatos, G., Siano, P.: ‘Design of robust electric power system stabilizers using Kharitonov's theorem’, Math. Comput. Simul., 2011, 82, (1), pp. 181191 (doi: 10.1016/j.matcom.2010.07.008).
    6. 6)
      • 6. Kolev, L.: ‘Determining the range of the power consumption in linear DC interval parameter circuits’, IEEE Trans. circuit systems I, 2011, 28, (9), pp. 21822188 (doi: 10.1109/TCSI.2011.2123390).
    7. 7)
      • 7. Garczarczyk, Z.A.: ‘Stability of linear circuits with interval data: a case study’. 16th Int. Symp. Theoretical Electrical Engineering (ISTET), 2011, pp. 14.
    8. 8)
      • 8. Leena, G., Datta, K.B., Ray, G.: ‘A class of stabilizing PID controllers for position control of single link robot’, Int. J. Control Automation, 2011, 4, (3), pp. 127141.
    9. 9)
      • 9. Zhan, S., Lam, J., Gao, H., Du, B., Wu, L.: ‘Positive observers and dynamic output feedback controllers for interval positive linear systems’, IEEE Trans. Circuits Syst., 2008, 55, (10), pp. 32093222 (doi: 10.1109/TCSI.2008.924116).
    10. 10)
      • 10. Bialas, S.: ‘A necessary and sufficient condition for the stability of interval matrices’, Int. J. Control, 1983, 37, pp. 717722 (doi: 10.1080/00207178308933004).
    11. 11)
      • 11. Barmish, B.R., Hollot, C.V.: ‘Counter-example to a recent result on the stability of interval matrices by S. Bialas’, Int. J. Control, 1984, 39, pp. 11031104 (doi: 10.1080/00207178408933235).
    12. 12)
      • 12. Qin, L., Davison, E.J.: ‘A new method for the stability robustness determination of state space models with real perturbations’. 27th IEEE Conf. Decision Control, 1988, pp. 538543.
    13. 13)
      • 13. Wang, K., Michel, A.N., Lui, D.: ‘Necessary and sufficient conditions for the hurwitz and schur stability of interval matrices’, IEEE Trans. Autom. Control, 1994, 39, (6), pp. 12511255 (doi: 10.1109/9.293189).
    14. 14)
      • 14. Hertz, D.: ‘The extreme eigenvalues and stability of real symmetric interval matrices’, IEEE Trans. Autom. Control, 1992, 37, (4), pp. 532535 (doi: 10.1109/9.126593).
    15. 15)
      • 15. Hertz, D.: ‘The extreme eigenvalues and stability of Hermitian interval matrices’, IEEE Trans. Circuits Syst., 1992, 39, (6), pp. 463466 (doi: 10.1109/81.153638).
    16. 16)
      • 16. Xiao, Y., Unbehauen, R.: ‘Robust hurwitz and schur stability test for interval matrices’. Proc. 39th IEEE Conf. Decision Control, 2000, pp. 42094214.
    17. 17)
      • 17. Yedavalli, R.: ‘A noncombinatorial necessary and sufficient vertex solution for checking robust stability of polytopes of matrices induced by interval parameters’, American Control Conf., 2003, pp. 38463851.
    18. 18)
      • 18. Rohn, J.: ‘Bounds on eigenvalues of interval matrices’, Zeitschriftfur Angewandte mathematik and mechanik, 1998, 78, (3), pp. S1049S1050 (doi: 10.1002/zamm.19980781593).
    19. 19)
      • 19. Kolev, L.: ‘Eigenvalue range determination for interval and parametric matrices’, Int. J. Circuit Theory Appl., 2010, 38, (10), pp. 10271061 (doi: 10.1002/cta.609).
    20. 20)
      • 20. Hladik, M., Daney, D., Tsigaridas, E.: ‘Bounds on real eigenvalues and singular values of interval matrices’, Am. J. Matrix Anal. Appl., 2010, 31, (4), pp. 21162129 (doi: 10.1137/090753991).
    21. 21)
      • 21. Hladik, M.: ‘Error bounds on the spectral radius of uncertain matrices’. Proc. Int. Conf. Numerical Analysis and Applied Mathematics, 2011, vol. 1389, pp. 882885, 19–25.
    22. 22)
      • 22. Matcovschi, M.H., Pastravanu, O., Voicu, M.: ‘Right bounds for eigenvalue ranges of interval matrices estimation principles vs global optimization’, J. Control Eng. Appl. Inf., 2012, 14, (1), pp. 313.
    23. 23)
      • 23. Kolev, L., Petrakieva, S.: ‘Assessing the stability of linear time-invariant continuous interval dynamic systems’, IEEE Trans. Autom. Control, 2005, 50, (3), pp. 393397 (doi: 10.1109/TAC.2005.843857).
    24. 24)
      • 24. Pastravanu, O., Matcovschi, M.: ‘Comments on: Assessing the stability of linear time-invariant continuous interval dynamic system’, IEEE Trans. Autom. Control, 2011, 56, (6), pp. 14421445 (doi: 10.1109/TAC.2011.2122650).
    25. 25)
      • 25. Franze, G., Carotenuto, L., Balestrino, A.: ‘New inclusion criterion for the stability of interval matrices’, IEE Proc. Control Theory Appl., 2006, 153, (4), pp. 12511255 (doi: 10.1049/ip-cta:20050236).
    26. 26)
      • 26. Rohn, J.: ‘Checking properties of interval matrices’, Technical Report 686, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, September 1996.
    27. 27)
      • 27. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, 1985).
    28. 28)
      • 28. Firouzbahrami, M., Nobakhti, A.: ‘On integrity of uncertain systems with interval or structured uncertainty’, Ind. Eng. Chem. Res., 2011, 50, (24), pp. 1394013946 (doi: 10.1021/ie201174b).
    29. 29)
      • 29. Juang, Y.T., Shao, C.S.: ‘Stability analysis of dynamic interval system’, Int. J. Control, 1989, 49, pp. 14011408.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0648
Loading

Related content

content/journals/10.1049/iet-cta.2012.0648
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address