Observer-based H ∞ control for discrete-time stochastic systems with quantisation and random communication delays
- Author(s): Huaicheng Yan 1, 2 ; Zhenzhen Su 1, 2 ; Hao Zhang 3, 4 ; Fuwen Yang 1, 2
-
-
View affiliations
-
Affiliations:
1:
Key Laboratory of Advanced Control and Optimisation for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China;
2: School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China;
3: Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Kowloon, Hong Kong;
4: Department of Control Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
-
Affiliations:
1:
Key Laboratory of Advanced Control and Optimisation for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China;
- Source:
Volume 7, Issue 3,
14 February 2013,
p.
372 – 379
DOI: 10.1049/iet-cta.2012.0600 , Print ISSN 1751-8644, Online ISSN 1751-8652

Full text loading...
Inspec keywords: delays; asymptotic stability; discrete time systems; observers; closed loop systems; probability; control system synthesis; stochastic systems; quantisation (signal); H∞ control
Other keywords: closed-loop system; sector bound approach; stochastic variable; discrete-time stochastic systems; control input quantisation; H∞ disturbance attenuation level; simulation example; linear function; observer-based quantised H∞ control problem; state-dependent disturbance; signal quantisation; measured output quantisation; exponential stability; random communication delays; Bernoulli random binary distribution; mean square method
Subjects: Stability in control theory; Discrete control systems; Distributed parameter control systems; Other topics in statistics; Control system analysis and synthesis methods; Time-varying control systems; Signal processing theory; Optimal control
References
-
-
1)
-
18. Yue, D., Peng, C., Tang, G.Y.: ‘Guaranteed cost control of linear systems over networks with state and input quantisations’, IET Control Theory Applic., 2006, 153, (6), pp. 658–664 (doi: 10.1049/ip-cta:20050294).
-
-
2)
-
17. Liberzon, D.: ‘Hybrid feedback stabilization of systems with quantized signals’, Automatica, 2003, 39, (9), pp. 1543–1554 (doi: 10.1016/S0005-1098(03)00151-1).
-
-
3)
-
20. Gao, H.J., Wang, C.H.: ‘A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed systems’, IEEE Trans. Signal Process., 2004, 52, (6), pp. 1631–1640 (doi: 10.1109/TSP.2004.827188).
-
-
4)
-
13. Gao, H.J., Chen, T.W.: ‘A new approach to quantized feedback control systems’, Automatica, 2008, 44, (2), pp. 534–542 (doi: 10.1016/j.automatica.2007.06.015).
-
-
5)
-
25. Xie, L.H.: ‘Output feedback H∞ control of systems with parameter uncertainty’, Int. J. Control, 1996, 63, (4), pp. 741–750 (doi: 10.1080/00207179608921866).
-
-
6)
-
16. Brockett, R.W., Liberzon, D.: ‘Quantized feedback stabilization of linear systems’, IEEE Trans. Autom. Control, 2000, 45, (7), pp. 1279–1289 (doi: 10.1109/9.867021).
-
-
7)
-
14. Fu, M.Y., Xie, L.H.: ‘The sector bound approach to quantized feedback control’, IEEE Trans. Autom. Control, 2005, 50, (2), pp. 1698–1712.
-
-
8)
-
11. He, X., Zhou, Z.D., Zhou, D.H.: ‘Networked fault detection with random communication delays and packet losses’, Int. J. Syst. Sci., 2010, 39, (11), pp. 1045–1054 (doi: 10.1080/00207720802085245).
-
-
9)
-
3. Liu, Y.R., Wang, Z.D., Liu, X.H.: ‘Robust H∞ filtering for discrete nonlinear stochastic systems with time-varying delay’, J. Math. Anal. Appl., 2008, 341, (1), pp. 318–336 (doi: 10.1016/j.jmaa.2007.10.019).
-
-
10)
-
22. Huang, D., Nguang, S.K.: ‘State feedback control of uncertain network control systems with random time delays’, IEEE Trans. Autom. Control, 2008, 53, (3), pp. 829–834 (doi: 10.1109/TAC.2008.919571).
-
-
11)
-
19. Tian, E.G., Yue, D., Peng, C.: ‘Quantized output feedback control for networked control systems’, Inf. Sci., 2008, 178, (12), pp. 2734–2749 (doi: 10.1016/j.ins.2008.01.019).
-
-
12)
-
12. Gao, H.J., Chen, T.W.: ‘H∞ estimation for uncertain systems with limited communication capacity’, IEEE Trans. Autom. Control, 2007, 52, (11), pp. 2070–2084 (doi: 10.1109/TAC.2007.908316).
-
-
13)
-
21. Zhang, L.Q., Shi, Y., Chen, T.W., Huang, B.: ‘A new method for stabilization of network control systems with random delays. IEEE Trans. Autom. Control, 2005, 50, (8), pp. 1177–1181 (doi: 10.1109/TAC.2005.852550).
-
-
14)
-
23. Yang, F.W., Wang, Z.D., Hung, Y.S., Gani, M.: ‘H∞ control for networked systems with random communication delays’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 511–518 (doi: 10.1109/TAC.2005.864207).
-
-
15)
-
7. Lee, Y.S., Moon, Y.S., Kwon, W.H., Park, P.G.: ‘Delay-dependent robust H∞ control for uncertain systems with a state-delay’, Automatica, 2004, 40, (1), pp. 65–72 (doi: 10.1016/j.automatica.2003.07.004).
-
-
16)
-
24. Zhou, S.S., Feng, G.: ‘H∞ filtering for discrete-time systems with randomly varying sensor delays, Automatica, 2008, 44, (7), pp. 1918–1922 (doi: 10.1016/j.automatica.2007.10.026).
-
-
17)
-
1. Xu, S.Y., Chen, T.W.: ‘Robust H∞ control for uncertain stochastic systems with state delay’, IEEE Trans. Autom. Control, 2002, 47, (12), pp. 2089–2094 (doi: 10.1109/TAC.2002.805670).
-
-
18)
-
4. Wang, Z.D., Daniel, W.C.Ho, Liu, Y.R., Liu, X.H.: ‘Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements’, Automatica, 2009, 45, (3), pp. 684–691 (doi: 10.1016/j.automatica.2008.10.025).
-
-
19)
-
2. Chen, W.H., Guan, Z.H., Liu, X.M.: ‘Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach’, Syst. Control Lett., 2005, 54, (6), pp. 547–555 (doi: 10.1016/j.sysconle.2004.10.005).
-
-
20)
-
9. Lam, J., Gao, H.J., Wang, C.H.: ‘Stability analysis for continuous systems with two additive time-varying delay components’, Syst. Control Lett., 2007, 56, (1), pp. 16–24 (doi: 10.1016/j.sysconle.2006.07.005).
-
-
21)
-
15. Coutinho, D.F., Fu, M.Y., Souza, C.E., ‘Input and output quantized feedback linear systems’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 761–766 (doi: 10.1109/TAC.2010.2040497).
-
-
22)
-
8. Yang, F.W., Wang, Z.D., Daniel, W.C.Ho, Gain, M.: ‘Robust H∞ control with missing measurements and time delays’, IEEE Trans. Autom. Control, 2007, 52, (9), pp. 1666–1672 (doi: 10.1109/TAC.2007.904250).
-
-
23)
-
10. Xiong, J.L., Lam, J.: ‘Stabibization of linear systems over networks with bounded packet loss’, Automatica, 2007, 43, (1), pp. 80–87 (doi: 10.1016/j.automatica.2006.07.017).
-
-
24)
-
5. Wang, Z.D., Liu, Y.R., Wei, G.L., Liu, X.H.: ‘A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances’, Automatica, 2010, 46, (3), pp. 543–548 (doi: 10.1016/j.automatica.2009.11.020).
-
-
25)
-
6. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst. Mag., 2001, 21, (1), pp. 84–99 (doi: 10.1109/37.898794).
-
-
26)
-
26. Lee, Y.S., Moon, Y.S., Kwon, W.H.: ‘Delay-dependent robust H∞ control for uncertain systems with time-varying state-delay’. Proc. 40th SICE Annual Conf., 2001, pp. 198–203.
-
-
1)

Related content
