http://iet.metastore.ingenta.com
1887

Observer-based H control for discrete-time stochastic systems with quantisation and random communication delays

Observer-based H control for discrete-time stochastic systems with quantisation and random communication delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors are concerned with the observer-based quantised H control problem for a class of discrete-time stochastic systems with random communication delays. The system under consideration involves signals quantisation, state-dependent disturbance as well as random communication delays. The measured output and the control input quantisation are considered simultaneously by using the sector bound approach, while the random communication delays from the sensor to the controller and from the controller to the plant are modelled by a linear function of the stochastic variable satisfying Bernoulli random binary distribution. It is aimed at designing an observer-based controller such that the dynamics of the closed-loop system is guaranteed to be exponentially stable in the mean square, and a prescribed H disturbance attenuation level is also achieved. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.

References

    1. 1)
      • 1. Xu, S.Y., Chen, T.W.: ‘Robust H control for uncertain stochastic systems with state delay’, IEEE Trans. Autom. Control, 2002, 47, (12), pp. 20892094 (doi: 10.1109/TAC.2002.805670).
    2. 2)
      • 2. Chen, W.H., Guan, Z.H., Liu, X.M.: ‘Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach’, Syst. Control Lett., 2005, 54, (6), pp. 547555 (doi: 10.1016/j.sysconle.2004.10.005).
    3. 3)
      • 3. Liu, Y.R., Wang, Z.D., Liu, X.H.: ‘Robust H filtering for discrete nonlinear stochastic systems with time-varying delay’, J. Math. Anal. Appl., 2008, 341, (1), pp. 318336 (doi: 10.1016/j.jmaa.2007.10.019).
    4. 4)
      • 4. Wang, Z.D., Daniel, W.C.Ho, Liu, Y.R., Liu, X.H.: ‘Robust H control for a class of nonlinear discrete time-delay stochastic systems with missing measurements’, Automatica, 2009, 45, (3), pp. 684691 (doi: 10.1016/j.automatica.2008.10.025).
    5. 5)
      • 5. Wang, Z.D., Liu, Y.R., Wei, G.L., Liu, X.H.: ‘A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances’, Automatica, 2010, 46, (3), pp. 543548 (doi: 10.1016/j.automatica.2009.11.020).
    6. 6)
      • 6. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst. Mag., 2001, 21, (1), pp. 8499 (doi: 10.1109/37.898794).
    7. 7)
      • 7. Lee, Y.S., Moon, Y.S., Kwon, W.H., Park, P.G.: ‘Delay-dependent robust H control for uncertain systems with a state-delay’, Automatica, 2004, 40, (1), pp. 6572 (doi: 10.1016/j.automatica.2003.07.004).
    8. 8)
      • 8. Yang, F.W., Wang, Z.D., Daniel, W.C.Ho, Gain, M.: ‘Robust H control with missing measurements and time delays’, IEEE Trans. Autom. Control, 2007, 52, (9), pp. 16661672 (doi: 10.1109/TAC.2007.904250).
    9. 9)
      • 9. Lam, J., Gao, H.J., Wang, C.H.: ‘Stability analysis for continuous systems with two additive time-varying delay components’, Syst. Control Lett., 2007, 56, (1), pp. 1624 (doi: 10.1016/j.sysconle.2006.07.005).
    10. 10)
      • 10. Xiong, J.L., Lam, J.: ‘Stabibization of linear systems over networks with bounded packet loss’, Automatica, 2007, 43, (1), pp. 8087 (doi: 10.1016/j.automatica.2006.07.017).
    11. 11)
      • 11. He, X., Zhou, Z.D., Zhou, D.H.: ‘Networked fault detection with random communication delays and packet losses’, Int. J. Syst. Sci., 2010, 39, (11), pp. 10451054 (doi: 10.1080/00207720802085245).
    12. 12)
      • 12. Gao, H.J., Chen, T.W.: ‘H estimation for uncertain systems with limited communication capacity’, IEEE Trans. Autom. Control, 2007, 52, (11), pp. 20702084 (doi: 10.1109/TAC.2007.908316).
    13. 13)
      • 13. Gao, H.J., Chen, T.W.: ‘A new approach to quantized feedback control systems’, Automatica, 2008, 44, (2), pp. 534542 (doi: 10.1016/j.automatica.2007.06.015).
    14. 14)
      • 14. Fu, M.Y., Xie, L.H.: ‘The sector bound approach to quantized feedback control’, IEEE Trans. Autom. Control, 2005, 50, (2), pp. 16981712.
    15. 15)
      • 15. Coutinho, D.F., Fu, M.Y., Souza, C.E., ‘Input and output quantized feedback linear systems’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 761766 (doi: 10.1109/TAC.2010.2040497).
    16. 16)
      • 16. Brockett, R.W., Liberzon, D.: ‘Quantized feedback stabilization of linear systems’, IEEE Trans. Autom. Control, 2000, 45, (7), pp. 12791289 (doi: 10.1109/9.867021).
    17. 17)
      • 17. Liberzon, D.: ‘Hybrid feedback stabilization of systems with quantized signals’, Automatica, 2003, 39, (9), pp. 15431554 (doi: 10.1016/S0005-1098(03)00151-1).
    18. 18)
      • 18. Yue, D., Peng, C., Tang, G.Y.: ‘Guaranteed cost control of linear systems over networks with state and input quantisations’, IET Control Theory Applic., 2006, 153, (6), pp. 658664 (doi: 10.1049/ip-cta:20050294).
    19. 19)
      • 19. Tian, E.G., Yue, D., Peng, C.: ‘Quantized output feedback control for networked control systems’, Inf. Sci., 2008, 178, (12), pp. 27342749 (doi: 10.1016/j.ins.2008.01.019).
    20. 20)
      • 20. Gao, H.J., Wang, C.H.: ‘A delay-dependent approach to robust H filtering for uncertain discrete-time state-delayed systems’, IEEE Trans. Signal Process., 2004, 52, (6), pp. 16311640 (doi: 10.1109/TSP.2004.827188).
    21. 21)
      • 21. Zhang, L.Q., Shi, Y., Chen, T.W., Huang, B.: ‘A new method for stabilization of network control systems with random delays. IEEE Trans. Autom. Control, 2005, 50, (8), pp. 11771181 (doi: 10.1109/TAC.2005.852550).
    22. 22)
      • 22. Huang, D., Nguang, S.K.: ‘State feedback control of uncertain network control systems with random time delays’, IEEE Trans. Autom. Control, 2008, 53, (3), pp. 829834 (doi: 10.1109/TAC.2008.919571).
    23. 23)
      • 23. Yang, F.W., Wang, Z.D., Hung, Y.S., Gani, M.: ‘H control for networked systems with random communication delays’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 511518 (doi: 10.1109/TAC.2005.864207).
    24. 24)
      • 24. Zhou, S.S., Feng, G.: ‘H filtering for discrete-time systems with randomly varying sensor delays, Automatica, 2008, 44, (7), pp. 19181922 (doi: 10.1016/j.automatica.2007.10.026).
    25. 25)
      • 25. Xie, L.H.: ‘Output feedback H control of systems with parameter uncertainty’, Int. J. Control, 1996, 63, (4), pp. 741750 (doi: 10.1080/00207179608921866).
    26. 26)
      • 26. Lee, Y.S., Moon, Y.S., Kwon, W.H.: ‘Delay-dependent robust H control for uncertain systems with time-varying state-delay’. Proc. 40th SICE Annual Conf., 2001, pp. 198203.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0600
Loading

Related content

content/journals/10.1049/iet-cta.2012.0600
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address