http://iet.metastore.ingenta.com
1887

Stabilisation of non-uniformly sampled systems via dynamic output-feedback control

Stabilisation of non-uniformly sampled systems via dynamic output-feedback control

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Stabilisation of sampled-data systems with time-varying and uncertain sampling periods via dynamic output-feedback controllers is considered. Extending the existing discrete-time approaches to the more general setup of output-feedback control, sufficient linear matrix inequalities conditions are developed for the design of linear, constant-parameter controllers. The applicability of the proposed design method is demonstrated through numerical examples, which also indicate improvement with regards to the other approaches.

References

    1. 1)
      • 1. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: ‘A survey of recent results in networked control systems’, Proc. IEEE, 2007, 95, (1), pp. 138162.
    2. 2)
      • 2. Hristu-Varsakelis, D.W.S.L., (Eds.): ‘Handbook of networked and embedded control systems’ (Birkhäuser, 2005).
    3. 3)
      • 3. Kalman, R.E.: ‘Analysis and synthesis of linear dynamical systems operating on randomly sampled data’. PhD thesis, Columbia University, New York, NY, 1957.
    4. 4)
      • 4. Zhang, W., Branicky, M.: ‘Stability of networked control systems with time-varying transmission period’, Conf. Communication, Control and Computing, 2001.
    5. 5)
      • 5. Walsh, G.C., Ye, H., Bushnell, L.: ‘Stability analysis of networked control systems’, IEEE Trans. Control Syst. Technol., 2002, 10, (3), pp. 438446.
    6. 6)
      • 6. Fridman, E., Seuret, A., Richard, J.-P.: ‘Robust sampled-data stabilization of linear systems: an input delay approach’, Automatica, 2004, 40, (8), pp. 14411446.
    7. 7)
      • 7. Mirkin, L.: ‘Some remarks on the use of time-varying delay to model sample-and-hold circuits’, IEEE Trans. Autom. Control, 2007, 52, (6), pp. 11091112.
    8. 8)
      • 8. Fujioka, H.: ‘Stability analysis of systems with aperiodic sample-and-hold devices’, Automatica, 2009, 45, (3), pp. 771775.
    9. 9)
      • 9. Fridman, E.: ‘A refined input delay approach to sampled-data control’, Automatica, 2010, 46, (2), pp. 421427.
    10. 10)
      • 10. Suh, Y.S.: ‘Stability and stabilization of nonuniform sampling systems’, Automatica, 2008, 44, (12), pp. 32223226.
    11. 11)
      • 11. Fujioka, H.: ‘A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices’, IEEE Trans. Autom. Control, 2009, 54, (10), pp. 24402445.
    12. 12)
      • 12. Fujioka, H., Nakai, T.: ‘Stabilizing systems with aperiodic sampling-and-hold devices: state feedback case’, IET Control Theory Appl., 2010, 4, pp. 262272.
    13. 13)
      • 13. Fujioka, H.: ‘Stability analysis for a class of networked/embedded control systems: output feedback case’, 17th IFAC World Congress, 2008, pp. 42104215.
    14. 14)
      • 14. Hetel, L., Cloosterman, M., van de Wouw, N., Heemels, W., Daafouz, J., Nijmeijer, H.: ‘Comparison of stability characterisations for networked control systems’, 48th IEEE Conf. on Decision and Control, 28th Chinese Control Conf., December 2009, pp. 79117916.
    15. 15)
      • 15. Hetel, L., Kruszewski, A., Perruquetti, W., Richard, J.: ‘Discrete and intersample analysis of systems with aperiodic sampling’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 16961701.
    16. 16)
      • 16. Oishi, Y., Fujioka, H.: ‘Stability and stabilization of aperiodic sampled-data control systems using robust linear matrix inequalities’, Automatica, 2010, 46, (8), pp. 13271333.
    17. 17)
      • 17. Naghshtabrizi, P., Hespanha, J., Teel, A.: ‘On the robust stability and stabilization of sampled-data systems: a hybrid system approach’, 45th IEEE Conf. on Decision and Control, December 2006, pp. 48734878.
    18. 18)
      • 18. Geromel, J.C., Korogui, R.H., Bernussou, J.: ‘2 and ℋ robust output feedback control for continuous time polytopic systems’, IET Control Theory Appl., 2007, 1, (5), pp. 15411549.
    19. 19)
      • 19. Hu, S., Yue, D., Du, Z., Liu, J.: ‘Reliable ℋ non-uniform sampling tracking control for continuous-time non-linear systems with stochastic actuator faults’, IET Control Theory Appl., 2012, 6, (1), pp. 120129.
    20. 20)
      • 20. Yuz, J., Alfaro, J., Agüero, J., Goodwin, G.: ‘Identification of continuous-time state-space models from non-uniform fast-sampled data’, IET Control Theory Appl., 2011, 5, (7), pp. 842855.
    21. 21)
      • 21. Naghshtabrizi, P., Hespanha, J.: ‘Designing an observer-based controller for a network control system’, Proc. 44th IEEE CDC and European Control Conf., 2005, pp. 848853.
    22. 22)
      • 22. Mustafa, G., Chen, T.: ‘ filtering for nonuniformly sampled systems: A markovian jump systems approach’, Syst. Control Lett., 2011, 60, (10), pp. 871876.
    23. 23)
      • 23. Loan, C.V.: ‘The sensitivity of the matrix exponential’, SIAM J. Numer. Anal., 1977, 14, pp. 971981.
    24. 24)
      • 24. Scherer, C.: ‘Theory of robust control’. Course notes, Delft University of Technology, The Netherlands, 2001.
    25. 25)
      • 25. Hetel, L., Daafouz, J., Iung, C.: ‘Analysis and control of LTI and switched systems in digital loops via an event-based modelling’, Int. J. Control, 2008, 81, (7), pp. 11251138.
    26. 26)
      • 26. Löfberg, J.: ‘Yalmip: a toolbox for modeling and optimization in MATLAB’, Proc. Computer-Aided Control System Design, 2004.
    27. 27)
      • 27. Fujioka, H., Oishi, Y.: ‘A switched Lyapunov function approach to stability analysis of non-uniformly sampled-data systems with robust LMI techniques’, Proc. Eighth IEEE Asian Control Conf., 2011, pp. 14871491.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0355
Loading

Related content

content/journals/10.1049/iet-cta.2012.0355
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address